Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-classifier Verification of Neural Time-Series Prediction Preprocessing for a BCI
University of Ulster. (School of Computing and Intelligent Systems)
University of Ulster. (School of Computing and Intelligent Systems)ORCID iD: 0000-0001-6553-823X
University of Ulster. (School of Computing and Intelligent Systems)
University of Ulster. (School of Computing and Intelligent Systems)
2007 (English)In: IET Irish Signals and System Conference 2007: Proc., 2007Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2007.
Keyword [en]
brain-computer interface, classification, feature extraction, time series, electroencephalogram
National Category
Other Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-90105OAI: oai:DiVA.org:kth-90105DiVA: diva2:504143
Conference
ISSC2007: 15th IET Irish Signals and Systems Conference, Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry, Northern Ireland, UK, 13-14 September 2007
Note
QC 20120522Available from: 2012-02-19 Created: 2012-02-19 Last updated: 2012-05-22Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Herman, Pawel Andrzej

Search in DiVA

By author/editor
Herman, Pawel Andrzej
Other Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf