Change search
ReferencesLink to record
Permanent link

Direct link
Femtosecond to millisecond studies of electron transfer processes in a donor-(pi-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0002-4521-2870
Show others and affiliations
2012 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 14, no 8, 2816-2831 p.Article in journal (Refereed) Published
Abstract [en]

Time-resolved emission and absorption spectroscopy are used to study the photoinduced dynamics of forward and back electron transfer processes taking place between a recently synthesized series of donor-(pi-spacer)-acceptor organic dyes and semiconductor films. Results are obtained for vertically oriented titania nanotube arrays (inner diameters 36 nm and 70 nm), standard titania nanoparticles (25 nm diameter) and, as a reference, alumina nanoparticle (13 nm diameter) films. The studied dyes contain a triphenylamine group as an electron donor, cyanoacrylic acid part as an electron acceptor, and differ by the substituents in a spacer group that causes a shift of its absorption spectra. Despite a red-shift of the dye absorption band resulting in an improved response to the solar spectrum, smaller electron injection rates and smaller extinction coefficients result in reduced dye sensitized solar cell (DSSC) conversion efficiencies. For the most efficient dye, TPC1, electron injection from the hot locally excited state to titania on a time scale of about 100 fs is suggested, while from the relaxed charge transfer state it proceeds in a non-exponential way with time constants from 1 ps to 50 ps. Our results imply that the latter process involves the trap states below the conduction band edge (or the sub-bandgap tail of the acceptor states), localized close to the dye radical cation, and is accompanied by fast electron recombination to the parent dye's ground state. This process should limit the efficiency of DSSCs made using these types of organic dyes. The residual, slower recombination can be described by a stretched exponential decay with a characteristic time of 0.5 ms and a dispersion parameter of 0.33. Both the electron injection and back electron transfer dynamics are similar in titania nanoparticles and nanotubes. Variations between the two film types are only found in the time resolved emission transients, which are explained in terms of the difference in local electric fields affecting the position of the emission bands.

Place, publisher, year, edition, pages
2012. Vol. 14, no 8, 2816-2831 p.
National Category
Organic Chemistry
URN: urn:nbn:se:kth:diva-90667DOI: 10.1039/c2cp23825jISI: 000299742000033ScopusID: 2-s2.0-84856843588OAI: diva2:506200
QC 20120228Available from: 2012-02-28 Created: 2012-02-27 Last updated: 2012-02-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link