Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biointeractive antibacterial fibres using polyelectrolyte multilayer modification
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0003-1812-7336
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-8622-0386
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
2012 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 19, no 5, 1731-1741 p.Article in journal (Refereed) Published
Abstract [en]

Contact-active antibacterial surfaces are a novel tool in the antibacterial battle. The preparation of such surfaces usually involves harsh reaction conditions and organic solvents. A more sustainable alternative would involve physical adsorption of water-soluble polyelectrolytes using a renewable substrate. Here, highly charged cationic polyvinylamines (PVAm), with or without hydrophobic modifications, have been adsorbed onto the naturally anionic cellulosic wood-fibres. To increase the amount of PVAm, polyelectrolyte multilayers were prepared using polyacrylic acid as the anionic polyelectrolyte. The modified fibres were characterised for PVAm content, water retention and antibacterial properties. The use of multilayers increased the total polymer content without notably reducing the water swelling. The fibres were shown to have excellent bioactive properties and reduced waterborne Escherichia coli and Bacillus subtilis by more than 99.9 %, which is a generally accepted definition of an antibacterial material. A large reduction in bacterial growth was observed upon addition of nutrients, although minor growth was detected after 24 h. The results further show that one adsorbed polymer layer was sufficient to obtain a contact-active surface, which makes the PVAm multilayer system seemingly unique. No polymer leaching from any of the samples was detected, indicating that the fibres work via a contact-active antibacterial mechanism. The results show the feasibility of constructing a sustainable antibacterial material using a renewable substrate and water-based solutions in the material construction process.

Place, publisher, year, edition, pages
2012. Vol. 19, no 5, 1731-1741 p.
Keyword [en]
Antibacterial, Fibre modification, Contact-active, Polyelectrolyte adsorption, Polyelectrolyte multilayers, Cellulose fibres
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-90748DOI: 10.1007/s10570-012-9742-0ISI: 000307768100023Scopus ID: 2-s2.0-84865423511OAI: oai:DiVA.org:kth-90748DiVA: diva2:506359
Note

QC 20121004. Updated from manuscript to article in journal.

Available from: 2012-02-28 Created: 2012-02-28 Last updated: 2017-12-07Bibliographically approved
In thesis
1. The creation of antibacterial fibres through physical adsorption of polyelectrolytes
Open this publication in new window or tab >>The creation of antibacterial fibres through physical adsorption of polyelectrolytes
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Contact-active antibacterial surfaces with irreversibly attached antibacterial com-pounds are a sustainable alternative to traditional biocides. No chemicals are released into nature and the antibacterial mechanism reduces the risk of the evolution of re-sistant bacteria. However, the preparation of such surfaces is far from sustainable, as organic solvents and harsh reaction conditions commonly are required. An alter-native option is to use polyelectrolyte multilayers (PEM), based on physical ad-sorption, which can be performed in water-based solutions at room temperature. Although contact-active antibacterial PEMs have been reported previously, this is the first study of renewable cellulosic wood fibres.

The build-up of cationic polymer polyvinylamine (PVAm) and anionic polyacrylic acid (PAA) multilayers on model surfaces was studied to optimise adsorption. The amount of adsorbed polyelectrolytes was continuously growing with increasing number of layers, but remained dense and flat as the number of layers increased. The largest adsorption was obtained at a high salt concentration, which shielded the repulsion between the polymers.

Model surfaces were also used to evaluate the influence of the polymer and number of layers on the antibacterial properties. Multilayers on model surfaces showed a low bacteriostatic effect, with up to approximately 40 % inhibition for 3 layers of un-modified PVAm/PAA. In contrast, when the same multilayers were applied on cel-lulosic fibres, bacterial-growth inhibition of > 99.9% was obtained. Hydrophobically modified PVAm did not yield better results, despite being superior in solution. An increase in fibre charge by fibre oxidation led to the largest amount of adsorbed pol-ymer and the best antibacterial properties, an effect that lasted for weeks. Electron microscopy study of bacteria on the fibres showed that the bacteria interacted more on a highly charged surface and that the morphology of the bacterial cell could be affected. The effect was suggested to be due to electrostatic interaction with the pos-itively charged modified fibres. The promising results offer the possibilities of a new generation of antibacterial surfaces based on a renewable resource.

Abstract [sv]

Antibakteriella kontaktaktiva ytor som har ett antibakteriellt ämne permanent fäst på ytan är ett miljövänligt och säkrare alternativ till traditionell biocidanvändning. Inget utsläpp av giftiga ämnen sker från ytorna och detta tillsammans med den anti-bakteriella mekanismen minskar risken för att bakterierna utvecklar resistens. Till-verkningsprocessen i sig har dock hittills varit allt annat än miljövänlig, då den ke-miska modifieringen kräver organiska lösningsmedel och har reaktioner som kräver speciella villkor, t ex höga temperaturer. En alternativ ytmodifiering är att använda sig av fysikalisk adsorption av polyelektrolyter i multiskikt, eftersom detta kan göras i vat-tenlösningar och i rumstemperatur. Det här arbetet är det första som beskriver kon-takt-aktiva multilager på förnyelsebara svedbaserade cellulosafiber.

Som ett första steg gjordes en adsorptionsstudie på modellytor för att optimera ad-sorptionen av katjonisk polyvinylamin (PVAm) och anjonisk polyakrylsyra (PAA). Med ökande antal lager ökade totala mängden adsorberad polymer samtidigt som multilagerna förblev platta och täta. Den högsta adsorptionen skedde vid en hög salt-halt som minimerade den elektrostatiska repulsionen mellan polymerkedjorna.

Modellytor användes även för att studera hur de antibakteriella egenskaperna påver-kades av polymermodifiering och av antal lager. På dessa ytor uppmättes en låg bakte-riostatisk effekt med upp till 40 % inhibering av bakterietillväxten för tre lager av PVAm./PAA När däremot samma multilager fanns på cellulosafiber ökade in-hiberingen till uppemot 99.9 %. Hydrofobmodifiering av PVAm påverkade inte det antibakteriella resultatet när de var i multilager, trots bevisad ökad verkan i lösning. Genom att via oxidering öka fiberladdningen kunde mängden adsorberad polymer yt-terligare öka och resulterade i en förbättrad antibakteriell verkan som höll i sig i flera veckor. Elektronmikroskopi av bakterier på fiber visade en ökad interaktion med hög-laddade ytor och att bakteriernas cellmorfologi kan påverkas av ytorna.Den observerade antibakteriella effekten föreslås vara en följd av elektrostatisk inter-aktion mellan de negativt laddade bakterierna och positivt laddade modifierade fibrena. Resultaten är lovande och banar väg för nya kontakt-aktiva antibakteriella material.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. 58 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2012:11
Keyword
antibacterial, polyelectrolyte multilayers, polyvinylamine, contact-active antibacterial surfaces
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-90731 (URN)978-91-7501-274-2 (ISBN)
Public defence
2012-03-16, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Biointeractive fibres with antibacterial properties
Available from: 2012-02-28 Created: 2012-02-28 Last updated: 2013-02-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Illergård, JosefinWågberg, Lars

Search in DiVA

By author/editor
Illergård, JosefinWågberg, LarsEk, Monica
By organisation
Wood Chemistry and Pulp TechnologyFibre TechnologyWallenberg Wood Science Center
In the same journal
Cellulose (London)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 561 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf