Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solute transport and retention in three-dimensional fracture networks
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
2012 (English)In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 48, W02509- p.Article in journal (Refereed) Published
Abstract [en]

Resolving the hydrodynamic control of retention is an important step in predictive modeling of transport of sorbing tracers in fractured rock. The statistics of the transport resistance parameter beta [T/L] and the related effective active specific surface area s(f) [1/L] are studied in a crystalline rock volume on a 100 m scale. Groundwater flow and advective transport are based on generic boundary conditions and realistic discrete fracture networks inferred from the Laxemar site, southeast Sweden. The overall statistics of beta are consistent with statistics of the water residence time tau; the moments of beta vary linearly with distance, at least up to 100 m. The correlation between log tau and log beta is predominantly linear, however, there is significant dispersion; the parameter s(f) strongly depends on the assumed hydraulic law (theoretical cubic or empirical quadratic). Fast and slow trajectories/segments in the network determine the shape of the beta distribution that cannot be reproduced by infinitely divisible model over the entire range; the low value range and median can be reproduced reasonably well with the tempered one-sided stable density using the exponent in the range 0.35-0.7. The low percentiles of the beta distribution seems to converge to a Fickian type of behavior from a 50 to 100 m scale.

Place, publisher, year, edition, pages
2012. Vol. 48, W02509- p.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-91253DOI: 10.1029/2011WR011086ISI: 000300232000002Scopus ID: 2-s2.0-84857098165OAI: oai:DiVA.org:kth-91253DiVA: diva2:509213
Funder
Swedish eā€Science Research Center
Note

QC 20120312

Available from: 2012-03-12 Created: 2012-03-12 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cvetkovic, Vladimir
By organisation
Land and Water Resources Engineering
In the same journal
Water resources research
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf