Change search
ReferencesLink to record
Permanent link

Direct link
4 Large-scale field-aligned current systems in the dayside high-latitude region
Show others and affiliations
1995 (English)In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 100, 137-153 p.Article in journal (Refereed) Published
Abstract [en]

A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and DMSP-F7 crossings of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the CPS precipitation region, often overlapping with the BPS at its poleward edge, and is interpreted as a region 2 current. The pair of downward and upward FACs in the middle of the structure are collocated with structured electron precipitation. The precipitation of high-energy (>1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simultaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region 0) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B-Y, We discuss the FAC structure in terms of three types of convection cells: the merging, viscous, and lobe cells. During strongly negative IMF B-Y two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitudinal overlap of midday and morning FAC systems. We suggest that the four-current sheet structure is common in a certain prenoon local time sector during strongly negative IMF B-Y.

Place, publisher, year, edition, pages
1995. Vol. 100, 137-153 p.
National Category
Fusion, Plasma and Space Physics
URN: urn:nbn:se:kth:diva-91840DOI: 10.1029/94JA01744OAI: diva2:511352
NR 20140805Available from: 2012-03-21 Created: 2012-03-21 Last updated: 2012-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Blomberg, Lars
By organisation
Alfvén LaboratorySpace and Plasma Physics
In the same journal
Journal of Geophysical Research
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1087 hits
ReferencesLink to record
Permanent link

Direct link