Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mesmerizer: a effective tool for a complete peer-to-peer software development life-cycle
KTH, School of Information and Communication Technology (ICT), Communication: Services and Infrastucture, Software and Computer Systems, SCS.
KTH, School of Information and Communication Technology (ICT), Communication: Services and Infrastucture, Software and Computer Systems, SCS.ORCID iD: 0000-0002-6718-0144
KTH, School of Information and Communication Technology (ICT), Communication: Services and Infrastucture, Software and Computer Systems, SCS.
2011 (English)In: 4th International ICST Conference on Simulation Tools and Techniques, 2011, 506-515 p.Conference paper, Published paper (Refereed)
Abstract [en]

In this paper we present what are, in our experience, the best practices in Peer-To-Peer (P2P) application development and how we combined them in a middleware platform called Mesmerizer. We explain how simulation is an integral part of the development process and not just an assessment tool. We then present our component-based event-driven framework for P2P application development, which can be used to execute multiple instances of the same application in a strictly controlled manner over an emulated network layer for simulation/testing, or a single application in a concurrent environment for deployment purpose. We highlight modeling aspects that are of critical importance for designing and testing P2P applications, e.g. the emulation of Network Address Translation and bandwidth dynamics. We show how our simulator scales when emulating low-level bandwidth characteristics of thousands of concurrent peers while preserving a good degree of accuracy compared to a packet-level simulator.

Place, publisher, year, edition, pages
2011. 506-515 p.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-92091ISBN: 978-1-936968-00-8 (print)OAI: oai:DiVA.org:kth-92091DiVA: diva2:512002
Conference
SIMUTools '11, 4th International ICST Conference on Simulation Tools and Techniques. Barcelona, Spain. March 21-25 2011
Note
QC 20120328Available from: 2012-03-26 Created: 2012-03-26 Last updated: 2013-11-22Bibliographically approved
In thesis
1. A System, Tools and Algorithms for Adaptive HTTP-live Streaming on Peer-to-peer Overlays
Open this publication in new window or tab >>A System, Tools and Algorithms for Adaptive HTTP-live Streaming on Peer-to-peer Overlays
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent years, adaptive HTTP streaming protocols have become the de facto standard in the industry for the distribution of live and video-on-demand content over the Internet. In this thesis, we solve the problem of distributing adaptive HTTP live video streams to a large number of viewers using peer-to-peer (P2P) overlays. We do so by assuming that our solution must deliver a level of quality of user experience which is the same as a CDN while trying to minimize the load on the content provider’s infrastructure. Besides that, in the design of our solution, we take into consideration the realities of the HTTP streaming protocols, such as the pull-based approach and adaptive bitrate switching.

The result of this work is a system which we call SmoothCache that provides CDN-quality adaptive HTTP live streaming utilizing P2P algorithms. Our experiments on a real network of thousands of consumer machines show that, besides meeting the the CDN-quality constraints, SmoothCache is able to consistently deliver up to 96% savings towards the source of the stream in a single bitrate scenario and 94% in a multi-bitrate scenario. In addition, we have conducted a number of pilot deployments in the setting of large enterprises with the same system, albeit tailored to private networks. Results with thousands of real viewers show that our platform provides an average offloading of bottlenecks in the private network of 91.5%.

These achievements were made possible by advancements in multiple research areas that are also presented in this thesis. Each one of the contributions is novel with respect to the state of the art and can be applied outside of the context of our application. However, in our system they serve the purposes described below.

We built a component-based event-driven framework to facilitate the development of our live streaming application. The framework allows for running the same code both in simulation and in real deployment. In order to obtain scalability of simulations and accuracy, we designed a novel flow-based bandwidth emulation model.

In order to deploy our application on real networks, we have developed a network library which has the novel feature of providing on-the-fly prioritization of transfers. The library is layered over the UDP protocol and supports NAT Traversal techniques. As part of this thesis, we have also improved on the state of the art of NAT Traversal techniques resulting in higher probability of direct connectivity between peers on the Internet.

Because of the presence of NATs on the Internet, discovery of new peers and collection of statistics on the overlay through peer sampling is problematic. Therefore, we created a peer sampling service which is NAT-aware and provides one order of magnitude fresher samples than existing peer sampling protocols.

Finally, we designed SmoothCache as a peer-assisted live streaming system based on a distributed caching abstraction. In SmoothCache, peers retrieve video fragments from the P2P overlay as quickly as possible or fall back to the source of the stream to keep the timeliness of the delivery. In order to produce savings, the caching system strives to fill up the local cache of the peers ahead of playback by prefetching content. Fragments are efficiently distributed by a self-organizing overlay network that takes into account many factors such as upload bandwidth capacity, connectivity constraints, performance history and the currently being watched bitrate.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. xix, 41 p.
Series
TRITA-ICT-ECS AVH, ISSN 1653-6363 ; 13:18
Keyword
peer-to-peer, distributed caching, nat traversal, congestion control, adaptive HTTP streaming, live streaming
National Category
Computer Science
Research subject
SRA - ICT
Identifiers
urn:nbn:se:kth:diva-134351 (URN)978-91-7501-915-4 (ISBN)
Public defence
2013-12-12, Sal D, Forum, KTH-ICT, Isafjordsgatan 39, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20131122

Available from: 2013-11-22 Created: 2013-11-21 Last updated: 2016-01-21Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Haridi, Seif

Search in DiVA

By author/editor
Roverso, RobertoHaridi, SeifGkogkas, Alexandros
By organisation
Software and Computer Systems, SCS
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf