References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Quasi-periodic perturbation of unimodal maps exhibiting an attracting 3-cyclePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 25, no 3, 683-741 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 25, no 3, 683-741 p.
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-91605DOI: 10.1088/0951-7715/25/3/683ISI: 000300607900007ScopusID: 2-s2.0-84857554638OAI: oai:DiVA.org:kth-91605DiVA: diva2:513080
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20120330Available from: 2012-03-30 Created: 2012-03-19 Last updated: 2012-03-30Bibliographically approved

We study a class of smooth maps Phi : T x [0, 1]. T x [0, 1] of the form theta bar right arrow theta + omega x bar right arrow c(theta)h(x) where h : [0, 1] --> [0, 1] is a unimodal map exhibiting an attracting periodic point of prime period 3, and omega is irrational (T = R/Z). We show that the following phenomenon can occur for certain h and c : T --> R: There exists a single measurable function psi : T --> [0, 1] whose graph attracts (exponentially fast) a.e. (theta, x) is an element of T x [0, 1] under forward iterations of the map Phi. Moreover, the graph of psi is dense in a cylinder M subset of T x [0, 1]. Furthermore, for every integer n >= 1 there exists n distinct repelling continuous curves Gamma(k) : (theta, phi(k)(theta))(theta is an element of T), all lying in M, such that Phi(Gamma(k)) = Gamma(k+1) (k < n) and Phi(Gamma(n)) = Gamma(1). We give concrete examples where both c(theta) and h(x) are real-analytic, but in the analysis we only need that they are C-1. In our setting the function c(theta) will be very close to 1 for all theta outside a tiny interval; on the interval c(theta) > 1 makes a small bump. Thus we cause the perturbation of h by rare quasi-periodic kicking.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});