Change search
ReferencesLink to record
Permanent link

Direct link
A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications.
Show others and affiliations
2009 (English)In: Biotechnology Journal, ISSN 1860-6768, Vol. 4, no 4, 525-534 p.Article in journal (Refereed) Published
Abstract [en]

In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 172], the variant oxidizes both sugars equally well [(k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower K(M) values and approximately ten-fold higher k(cat) values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60 degrees C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D-glucose/D-galactose mixtures at both 30 and 50 degrees C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 A resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type.

Place, publisher, year, edition, pages
2009. Vol. 4, no 4, 525-534 p.
Keyword [en]
Biofuel cell, Enzymatic batch conversion, Enzyme engineering, Flavoprotein, Rational protein design
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:kth:diva-92623DOI: 10.1002/biot.200800260PubMedID: 19291706ScopusID: 2-s2.0-65549159161OAI: diva2:514054
QC 20120410Available from: 2012-04-04 Created: 2012-04-04 Last updated: 2012-04-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Spadiut, OliverRadakovits, KatrinSalaheddin, ClaraTan, Tien-ChyeDivne, Christina
By organisation
In the same journal
Biotechnology Journal
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link