Change search
ReferencesLink to record
Permanent link

Direct link
XCOM intrinsic dimensionality for low-Z elements at diagnostic energies
KTH, School of Engineering Sciences (SCI), Physics, Medical Imaging.
2012 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 39, no 2, 654-657 p.Article in journal (Refereed) Published
Abstract [en]

Purpose: To determine the intrinsic dimensionality of linear attenuation coefficients (LACs) from XCOM for elements with low atomic number (Z = 1-20) at diagnostic x-ray energies (25-120 keV). H-0(q), the hypothesis that the space of LACs is spanned by q bases, is tested for various q-values. Methods: Principal component analysis is first applied and the LACs are projected onto the first q principal component bases. The residuals of the model values vs XCOM data are determined for all energies and atomic numbers. Heteroscedasticity invalidates the prerequisite of i.i.d. errors necessary for bootstrapping residuals. Instead wild bootstrap is applied, which, by not mixing residuals, allows the effect of the non-i.i.d residuals to be reflected in the result. Credible regions for the eigenvalues of the correlation matrix for the bootstrapped LAC data are determined. If subsequent credible regions for the eigenvalues overlap, the corresponding principal component is not considered to represent true data structure but noise. If this happens for eigenvalues l and l + 1, for any l <= q, H-0(q) is rejected. Results: The largest value of q for which H-0(q) is nonrejectable at the 5%-level is q = 4. This indicates that the statistically significant intrinsic dimensionality of low-Z XCOM data at diagnostic energies is four. Conclusions: The method presented allows determination of the statistically significant dimensionality of any noisy linear subspace. Knowledge of such significant dimensionality is of interest for any method making assumptions on intrinsic dimensionality and evaluating results on noisy reference data. For LACs, knowledge of the low-Z dimensionality might be relevant when parametrization schemes are tuned to XCOM data. For x-ray imaging techniques based on the basis decomposition method (Alvarez and Macovski, Phys. Med. Biol. 21, 733-744, 1976), an underlying dimensionality of two is commonly assigned to the LAC of human tissue at diagnostic energies. The finding of a higher statistically significant dimensionality thus raises the question whether a higher assumed model dimensionality (now feasible with the advent of multibin x-ray systems) might also be practically relevant, i.e., if better tissue characterization results can be obtained.

Place, publisher, year, edition, pages
2012. Vol. 39, no 2, 654-657 p.
Keyword [en]
XCOM, linear attenuation coefficients, linear subspace dimensionality, bootstrap
National Category
Radiology, Nuclear Medicine and Medical Imaging
URN: urn:nbn:se:kth:diva-93659DOI: 10.1118/1.3675399ISI: 000300215800010ScopusID: 2-s2.0-84856976506OAI: diva2:517598
QC 20120424Available from: 2012-04-24 Created: 2012-04-23 Last updated: 2012-04-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bornefalk, Hans
By organisation
Medical Imaging
In the same journal
Medical physics (Lancaster)
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 55 hits
ReferencesLink to record
Permanent link

Direct link