Change search
ReferencesLink to record
Permanent link

Direct link
Wall accumulation and spatial localization in particle-laden wall flows
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-9627-5903
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-4346-4732
Show others and affiliations
2012 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 699, 50-78 p.Article in journal (Refereed) Published
Abstract [en]

We study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.

Place, publisher, year, edition, pages
2012. Vol. 699, 50-78 p.
Keyword [en]
particle/fluid flow, turbulence simulation, turbulent mixing
National Category
Fluid Mechanics and Acoustics
URN: urn:nbn:se:kth:diva-96437DOI: 10.1017/jfm.2012.65ISI: 000303833300002ScopusID: 2-s2.0-84864195658OAI: diva2:531117
Swedish e‐Science Research Center

QC 20120605

Available from: 2012-06-05 Created: 2012-06-04 Last updated: 2013-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Schlatter, PhilippBrandt, Luca
By organisation
MechanicsLinné Flow Center, FLOW
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link