Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improved source reconstruction in Fourier-based Near-field Acoustic Holography applied to small apertures
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.ORCID iD: 0000-0002-3609-3005
Sorama BV.
Eindhoven University of Technology.
2012 (English)In: Mechanical systems and signal processing, ISSN 0888-3270, E-ISSN 1096-1216, Vol. 32, 359-373 p.Article in journal (Refereed) Published
Abstract [en]

It is well known that Fourier-based Near-field Acoustic Holography fails to produce good source reconstructions when the aperture size of the microphone array is smaller than the source size. In this paper this problem is overcome by pre-conditioning the spatial hologram data using Linear Predictive Border Padding (LPBP) before it is Fourier-transformed to the wave-number domain. It is shown that LPBP allows for very small aperture sizes with a good reconstruction accuracy. An exhaustive analysis of LPBP is presented based on numerical experiments and measured data. The numerical experiments are performed on two different source types: modal patterns and point sources. These two types of sources represent the two limit situations that one can find in practice: modal patterns have a tonal spectrum in the spatial wave-number domain and are relatively easy to reconstruct accurately, while point sources have a broad-band wave-number spectrum which makes them very challenging to reconstruct. In order to illustrate the accuracy of the method in practice, results of measurements on a hard disk drive are presented as well. For a given distance to the source, the position and size of the hologram plane apertures is varied and the reconstructed source information is compared to the original source data. The reconstructed sources are compared both qualitatively and quantitatively. The results show that LPBP is an efficient and accurate extrapolation method, which leads to accurate reconstructions even for very small aperture sizes.

Place, publisher, year, edition, pages
2012. Vol. 32, 359-373 p.
Keyword [en]
Data extrapolation, Inverse acoustics, Leakage, NAH, Source identification
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-96651DOI: 10.1016/j.ymssp.2012.06.002ISI: 000308783100027Scopus ID: 2-s2.0-84865045645OAI: oai:DiVA.org:kth-96651DiVA: diva2:531793
Funder
TrenOp, Transport Research Environment with Novel Perspectives
Note

QC 20120829

Available from: 2012-06-07 Created: 2012-06-07 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lopez Arteaga, Ines

Search in DiVA

By author/editor
Lopez Arteaga, Ines
By organisation
Marcus Wallenberg Laboratory MWL
In the same journal
Mechanical systems and signal processing
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf