Change search
ReferencesLink to record
Permanent link

Direct link
Use of converters for feeding of AC railways for all frequencies
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0003-2109-060X
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0001-7330-146X
2012 (English)In: Energy for Sustainable Development, ISSN 0973-0826, Vol. 16, no 3, 368-378 p.Article in journal (Refereed) Published
Abstract [en]

Railways are the most energy-efficient land-based mode of transport, and electrification is the most energy-efficient way to power the trains. There are many existing solutions to supply the trains with electricity. Regardless of which particular technology is chosen, it is beneficial to interconnect the public power grids to grids supplying power to the railways. This paper shows that the most efficient, flexible, and gentle-for-the-public-grid way of doing that is through power electronic-based power converters. Converters offer great benefits regardless of whether the overhead contact lines are of DC-type or AC type, and regardless of the AC grid frequency. This paper presents neither new theory nor new experimental results. Based on already available information, this paper presents logical arguments leading to this conclusion from collected facts. Over time what used to be advanced and high-cost equipment earlier can nowadays be purchased at reasonable cost. It is obvious that for most electrically-fed railways, the use of modern power converters is attractive. Where the individual trains are high consumers of energy, the railway gradients are substantial, and the public grids feeding the railway are weak, the use of converters would be technically desirable, if not necessary for electrification.It is expected that more high-speed railways will be built, and more existing railways will be electrified in the foreseeable future. This paper could provide some insights to infrastructure owners and decision makers in railway administrations about value additions that converter-fed electric railways would provide.

Place, publisher, year, edition, pages
Elsevier, 2012. Vol. 16, no 3, 368-378 p.
Keyword [en]
Railway power supply systems, Converters
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-96797DOI: 10.1016/j.esd.2012.05.003ISI: 000308522500014ScopusID: 2-s2.0-84865444200OAI: diva2:532703

QC 20120926

Available from: 2012-06-12 Created: 2012-06-12 Last updated: 2012-12-06Bibliographically approved
In thesis
1. Optimal Railroad Power Supply System Operation and Design: Detailed system studies, and aggregated investment models
Open this publication in new window or tab >>Optimal Railroad Power Supply System Operation and Design: Detailed system studies, and aggregated investment models
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Railway power supply systems (RPSSs) differ mainly from public power systems from that the loads are moving. These moving loads are motoring trains. Trains can also be regenerating when braking and are then power sources. These loads consume comparatively much power, causing substantial voltage drops, not rarely so big that the loads are reduced. By practical reasons most RPSSs are single-phase AC or DC. Three-phase public grid power is either converted into single-phase for feeding the railway or the RPSS is compartmentalized into separate sections fed individually from alternating phase-pairs of the public grid. The latter is done in order not to overload any public grid phase unnecessarily much.

This thesis summarizes various ways of optimally operating or designing the railway power supply system. The thesis focuses on converter-fed railways for the reasons that they are more controllable, and also has a higher potential for the future. This is also motivated in a literature-reviewing based paper arguing for the converter usage potential. Moreover, converters of some kind have to be used when the RPSS uses DC or different AC frequency than the public grid.

The optimal operation part of this thesis is mainly about the optimal power flow controls and unit commitments of railway converter stations in HVDC-fed RPSSs. The models are easily generalized to different feeding, and they cope with regenerative braking. This part considers MINLP (mixed integer nonlinear programming) problems, and the main part of the problem is non-convex nonlinear. The concept is presented in one paper. The subject of how to model the problem formulations have been treated fully in one paper.

The thesis also includes a conference article and a manuscript for an idea including the entire electric train driving strategy in an optimization problem considering power system and mechanical couplings over time. The latter concept is a generalized TPSS (Train Power Systems Simulator), aiming for more detailed studies, whereas TPSS is mainly for dimensioning studies. The above optimal power flow models may be implemented in the entire electric train driving strategy model.

The optimal design part of this thesis includes two aggregation models for describing reduction in train traffic performance. The first one presented in a journal, and the second one, adapted more useful with different simulation results was presented at a conference. It also includes an early model for optimal railway power converter placements.

The conclusions to be made are that the potential for energy savings by better operation of the railway power system is great. Another conclusion is that investment planning models for railway power systems have a high development potential. RPSS planning models are computationally more attractive, when aggregating power system and train traffic details.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. xii, 77 p.
Trita-EE, ISSN 1653-5146 ; 2012:062
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
urn:nbn:se:kth:diva-107037 (URN)978-91-7501-584-2 (ISBN)
Public defence
2012-12-17, sal Q2, Osquldasväg 10, KTH, Stockholm, 10:00 (English)

QC 20121206

Available from: 2012-12-06 Created: 2012-12-05 Last updated: 2013-02-25Bibliographically approved

Open Access in DiVA

fulltext(2734 kB)2793 downloads
File information
File name FULLTEXT01.pdfFile size 2734 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Abrahamsson, LarsÖstlund, Stefan
By organisation
Electric Power SystemsElectrical Energy Conversion
In the same journal
Energy for Sustainable Development
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 2797 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 597 hits
ReferencesLink to record
Permanent link

Direct link