Change search
ReferencesLink to record
Permanent link

Direct link
Cosmic-ray current-driven turbulence and mean-field dynamo effect
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.ORCID iD: 0000-0002-7304-021X
2012 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 753, no 1, 6- p.Article in journal (Refereed) Published
Abstract [en]

We show that an a effect is driven by the cosmic-ray (CR) Bell instability exciting left-right asymmetric turbulence. Alfven waves of a preferred polarization have maximally helical motion, because the transverse motion of each mode is parallel to its curl. We show how large-scale Alfven modes, when rendered unstable by CR streaming, can create new net flux over any finite region, in the direction of the original large-scale field. We perform direct numerical simulations (DNSs) of a magnetohydrodynamic fluid with a forced CR current and use the test-field method to determine the alpha effect and the turbulent magnetic diffusivity. As follows from DNS, the dynamics of the instability has the following stages: (1) in the early stage, the small-scale Bell instability that results in the production of small-scale turbulence is excited; (2) in the intermediate stage, there is formation of larger-scale magnetic structures; (3) finally, quasi-stationary large-scale turbulence is formed at a growth rate that is comparable to that expected from the dynamo instability, but its amplitude over much longer timescales remains unclear. The results of DNS are in good agreement with the theoretical estimates. It is suggested that this dynamo is what gives weakly magnetized relativistic shocks such as those from gamma-ray bursts (GRBs) a macroscopic correlation length. It may also be important for large-scale magnetic field amplification associated with CR production and diffusive shock acceleration in supernova remnants (SNRs) and blast waves from GRBs. Magnetic field amplification by Bell turbulence in SNRs is found to be significant, but it is limited owing to the finite time available to the super-Alfvenicly expanding remnant. The effectiveness of the mechanisms is shown to be dependent on the shock velocity. Limits on magnetic field growth in longer-lived systems, such as the Galaxy and unconfined intergalactic CRs, are also discussed.

Place, publisher, year, edition, pages
2012. Vol. 753, no 1, 6- p.
Keyword [en]
cosmic rays, instabilities, magnetic fields, turbulence
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:kth:diva-99217DOI: 10.1088/0004-637X/753/1/6ISI: 000305632500006ScopusID: 2-s2.0-84862584003OAI: diva2:541998

QC 20120727

Available from: 2012-07-27 Created: 2012-07-23 Last updated: 2013-08-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rogachevskii, IgorKleeorin, NathanBrandenburg, Axel
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link