Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical characterization of ZnO nanopillars on Si and macroporous periodic Si structure
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.ORCID iD: 0000-0002-9050-5445
Show others and affiliations
2012 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 111, no 12, 123527- p.Article in journal (Refereed) Published
Abstract [en]

ZnO nanopillars were successfully grown using both the vapor-liquid-solid and the aqueous chemical growth methods on different substrates, such as quartz, n-, and p-type non-porous Si wafer (flat) and microporous periodic Si structure (MPSiS). Scanning electron microscopy was employed to compare sample morphologies. The absorption was calculated employing the GW(0) method, based on the local density approximation, and with the projector augmented wave approach. Experiment and theory show a reasonable agreement when the shape of the optical absorption is considered. The measured absorption of ZnO nanopillars, on different substrates, is lower than that observed for ZnO films on quartz substrate, in the energy gap spectral range. A strong effect of MPSiS substrates on ZnO nanopillar properties is observed. The photoluminescence technique was also employed as an optical characterization.

Place, publisher, year, edition, pages
2012. Vol. 111, no 12, 123527- p.
Keyword [en]
Periodic structures, Quartz, Scanning electron microscopy, Silicon, Silicon wafers, Substrates, Vapors, Zinc oxide
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-99421DOI: 10.1063/1.4729260ISI: 000305832100050Scopus ID: 2-s2.0-84863511506OAI: oai:DiVA.org:kth-99421DiVA: diva2:542343
Funder
Swedish Research Council
Note
QC 20120731Available from: 2012-07-31 Created: 2012-07-30 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Persson, Clas

Search in DiVA

By author/editor
Baldissera, GustavoPersson, Clas
By organisation
Applied Material Physics
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf