Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and electrochemical performances of linicuzn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
Show others and affiliations
2012 (English)In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 12, no 6, 5102-5105 p.Article in journal (Refereed) Published
Abstract [en]

Low temperature solid oxide fuel cell (LTSOFC, 300-600 °C) is developed with advantages compared to conventional SOFC (800-1000 °C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li 0.28Ni 0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm -2 when it operates at 470 °C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

Place, publisher, year, edition, pages
2012. Vol. 12, no 6, 5102-5105 p.
Keyword [en]
Catalyst, Cell Performance, LiNiCuZn Oxides, Low Temperature Solid Oxide Fuel Cell, Slurry Method
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-100318DOI: 10.1166/jnn.2012.4940ISI: 000306861000103Scopus ID: 2-s2.0-84863978332OAI: oai:DiVA.org:kth-100318DiVA: diva2:543447
Funder
VINNOVA
Note

QC 20120808

Available from: 2012-08-08 Created: 2012-08-06 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jing, YifuQin, HaiyingLiu, QinghuaSingh, ManishZhu, Bin
By organisation
Energy TechnologyHeat and Power Technology
In the same journal
Journal of Nanoscience and Nanotechnology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf