Change search
ReferencesLink to record
Permanent link

Direct link
Adaptive optics for peripheral vision
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-4894-7944
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0001-9172-858X
2012 (English)In: Journal of Modern Optics, ISSN 0950-0340, E-ISSN 1362-3044, Vol. 59, no 12, 1064-1070 p.Article in journal (Refereed) Published
Abstract [en]

Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20 nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p=0.001, R 2=0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

Place, publisher, year, edition, pages
2012. Vol. 59, no 12, 1064-1070 p.
Keyword [en]
adaptive optics, low contrast resolution, off-axis wavefront aberration, peripheral vision, visual acuity
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-101593DOI: 10.1080/09500340.2012.683827ISI: 000307270500005ScopusID: 2-s2.0-84864721326OAI: diva2:548247

QC 20120830

Available from: 2012-08-30 Created: 2012-08-30 Last updated: 2013-03-27Bibliographically approved
In thesis
1. Peripheral Vision: Adaptive Optics and Psychophysics
Open this publication in new window or tab >>Peripheral Vision: Adaptive Optics and Psychophysics
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about our peripheral vision. Peripheral vision is poor compared to central vision, due to both neural and optical factors. The optical factors include astigmatism, defocus and higher order aberrations consisting mainly of coma. Neurally, the density of ganglion cells decreases towards the periphery, which limits the sampling density. The questions that this thesis attempts to answer are how much and under which circumstances correction of optical errors can improve peripheral vision. For this, an adaptive optics system has been constructed with a wavefront sensor and a deformable mirror working in closed loop to perform real-time correction of optical errors. To investigate vision, psychophysical routines utilizing Bayesian methods have been evaluated and modified for peripheral vision to handle the presence of aliasing, fixation instability and rapid fatigue.

We found that correcting both refractive errors and higher order aberrations improved peripheral low-contrast resolution acuity. \\

We looked at two specific topics in peripheral vision research in particular: Central visual field loss and myopia development. Persons with central visual field loss have to rely on their remaining peripheral vision, and it is of great interest to understand whether optical correction can offer them any benefits. In a case study on a single subject, we found meaningful improvements in vision with both optimized refractive correction as well as additional benefits with aberration correction. These improvements were larger than for comparable healthy subjects with a similar magnitude of aberrations. When it comes to myopia development, an interesting hypothesis is that peripheral optics affect and guide the emmetropization process. We have found an asymmetric depth of field in the periphery for myopic subjects, caused by their higher order aberrations, and presented a model on how this asymmetry may influence the emmetropization process.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. xiii, 72 p.
Trita-FYS, ISSN 0280-316X ; 2013:08
National Category
Other Physics Topics
urn:nbn:se:kth:diva-120077 (URN)978-91-7501-698-6 (ISBN)
Public defence
2013-04-19, Sal FD5, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)

QC 20130327

Available from: 2013-03-27 Created: 2013-03-27 Last updated: 2013-04-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rosén, RobertLundström, LindaUnsbo, Peter
By organisation
Biomedical and X-ray Physics
In the same journal
Journal of Modern Optics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link