Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
Show others and affiliations
2012 (English)In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 33, 16709-16713 p.Article in journal (Refereed) Published
Abstract [en]

Colloidal upconversion (UC) nanocrystals were explored as energy relay materials for dye-sensitized solar cells for the first time. The utilization of colloidal UC nanocrystals was found to significantly enhance the upconversion efficiency and improve the photocurrent of the cells for low infrared irradiation intensity. In addition, it was found that UC nanocrystals of small size favor infiltration into a TiO2 film and bring higher relay efficiency. Finally, we found that UC nanocrystals can serve as a scattering material to increase the light absorption capability of the cells and increase the overall photocurrent of the cells under simulated sunlight irradiation.

Place, publisher, year, edition, pages
2012. Vol. 22, no 33, 16709-16713 p.
Keyword [en]
Tio2 Films, Photoluminescence, Nanophosphors, Scattering, Efficiency, Fluorescence, Electrolyte, Sensitizer, Phase, Layer
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-102144DOI: 10.1039/c2jm16127cISI: 000306972900003Scopus ID: 2-s2.0-84865523343OAI: oai:DiVA.org:kth-102144DiVA: diva2:551043
Funder
Swedish e‐Science Research Center
Note

QC 20120910

Available from: 2012-09-10 Created: 2012-09-10 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Development of Nanoparticle Sensitized Solar Cells
Open this publication in new window or tab >>Development of Nanoparticle Sensitized Solar Cells
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, I have been working with the development of nanoparticle sensitized solar cells. In the subarea of quantum dot sensitized solar cells (QDSCs), I have investigated type-II quantum dots (QDs), quantum rods (QRs) and alloy QDs, and developed novel redox couples as electrolytes. I have also proposed upconversion nanoparticles as energy relay materials for dye-sensitized solar cells (DSCs).

Colloidal ZnSe/CdS type-II QDs were applied for QDSCs for the first time. The interesting features of those refer to that their photoelectrons and photoholes are located on the different parts of the dot, namely in the CdS shell and in the ZnSe core, respectively. That spatial separation between photoelectrons and photoholes can so effectively enhance the charge extraction efficiency, thus facilitating the electron injection, and also effectively expand the absorption spectrum. All these characteristics contribute to a high photon to current conversion efficiency. Furthermore, a comparison between the photovoltaic performance of ZnSe/CdS and CdS/ZnSe QDSCs shows that the electron distribution is important for the electron injection of the QDs.

Colloidal CdS/CdSe QRs were applied to quantum rod-sensitized solar cells (QRSCs). They showed a higher electron injection efficiency than the analogous QDSCs. It is concluded that reduction of the carrier confinement dimensions of the nanoparticles can improve the electron injection efficiency of the nanoparticle sensitized solar cells.

Two types of organic electrolytes based on the redox couples of McMT-/BMT (OS1) and TMTU/TMTU-TFO (OS2) were used for the QDSCs. By reducing the charge recombination between the electrolyte and the counter electrode, the fill factor and the photovoltage of these QDSCs were significantly improved, resulting in a higher efficiency for the studied solar cells than that with a commonly used inorganic electrolyte.

Ternary-alloy PbxCd1-xS QDs used as photosensitizers for QDSCs were found to improve the photocurrent compared to the corresponding CdS and PbS QDs. By considering the effect of different ratios of Pb to Cd in thePbxCd1-xS QDs on the photovoltaic performance it was discovered that the photocurrent increases and the photovoltage decreases with the increase of the ratio in a certain range.

Upconversion (UC) nanoparticles provide a strategy to develop panchromatic solar cells. Three types of UC nanoparticles employed by DSCs were confirmed to work as energy relay materials for effectively extending the light-harvesting spectrum to the near-infrared (NIR) region. They were also found to play a role as scattering centers to enhance the photovoltaic performance of the solar cells.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 70 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2013:16
Keyword
quantum dots, quantum rods, nanoparticles, solar cells, colloidal, type-II, electron extraction, alloy, organic electrolyte, energy relay, upconversion.
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-129382 (URN)978-91-7501-862-1 (ISBN)
Public defence
2013-10-24, FB42, AlbaNova University Center, Roslagstullsbacken 21, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20131002

Available from: 2013-10-02 Created: 2013-09-28 Last updated: 2013-10-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, LichengÅgren, Hans

Search in DiVA

By author/editor
Yuan, ChunzeChen, GuanyingNing, ZhijunTian, HainingSun, LichengÅgren, Hans
By organisation
Theoretical Chemistry and BiologyOrganic Chemistry
In the same journal
Journal of Materials Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf