Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
Show others and affiliations
2012 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 34, 18070-18078 p.Article in journal (Refereed) Published
Abstract [en]

In dye-sensitized solar cells (DSC) an efficient transfer of dioles from the oxidized dye to the contact is necessary, which in solid-state DSC is performed by hole-conductor molecules. In this report we use photoinduced absorption and transient absorption spectroscopy to show that a small hole-conducting molecule, tris(p-anisyl)amine, regenerates dye molecules in the pores of the dye-sensitized TiO2 nanoparticle electrode efficiently even for thick (>5 mu m) electrodes. For similar thicknesses we observe incomplete regeneration using a larger polymer hole-conductor. However, the performance of the solar cells with the small hole-conductor molecules is poor due to that inefficient hole conduction in these small molecules may limit the collection of the charges at the contacts. Polymer hole-conductors, which may have a good hole conductivity, also have a high molecular weight, which makes these polymers difficult to infiltrate into the smallest pores in the electrode. We show that a conducting polymer, P3HT, may be added to the small molecule hole-conductor, to enable better transport of the charges to the contact and to reduce recombination and therefore increase the photocurrent. This new device construction with a small molecule efficiently regenerating the dye molecules, and a polymer conducting the holes to the contact is therefore a promising pathway for solid-state dye-sensitized solar cells.

Place, publisher, year, edition, pages
2012. Vol. 116, no 34, 18070-18078 p.
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-103380DOI: 10.1021/jp3052449ISI: 000308120000010Scopus ID: 2-s2.0-84865745135OAI: oai:DiVA.org:kth-103380DiVA: diva2:560825
Funder
Swedish Research Council, 246124
Note

QC 20121016

Available from: 2012-10-16 Created: 2012-10-11 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Gabrielsson, ErikSun, Licheng
By organisation
Organic Chemistry
In the same journal
The Journal of Physical Chemistry C
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf