Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetrical Anti-Directional Metallization for Stress-Compensation of Transfer-Bonded Monocrystalline Silicon Membranes
KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
2013 (English)In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 22, no 1, p. 195-205Article in journal (Refereed) Published
Abstract [en]

This paper demonstrates a very robust and fabrication-parameter insensitive concept of full stress compensation in metallized monocrystalline silicon membranes by symmetrical antidirectional metal deposition on both sides of a transfer-bonded silicon membrane. This concept results in previously unmatched near-perfectly flat, temperature-compensated, and high-reliability metal-coated membranes, independent on the thickness, residual stress, and material of the metal layers. Application examples are high-performance optical mirror devices and quasi-optical tunable microwave surfaces, the latter being presented in this paper. The influence of the thickness ratio of the metal films on the membrane curvature is investigated, demonstrating a controllable curvature range from -0.3 to 0.1 mm(-1) for the investigated devices by varying the top-to-bottom metal thickness ratio from 0.38 to 3.5 using metal thicknesses from 200 to 800 nm. Near-zero curvature down to 0.004 mm(-1) is also demonstrated. Theoretical analysis of the stress-compensated multilayer structures and characterization results of fabricated test devices are included in this paper, as well as the influence of unsymmetrically etched structures in the two metallization layers on the stress-induced curvature. Reliability tests up to 100 million cycles showed no detectable change in curvature or plastic deformation, proving the robustness and repeatability of this new design concept of zero-curvature temperature-compensated monocrystalline silicon-core membranes with thick metal coating. [2012-0230]

Place, publisher, year, edition, pages
2013. Vol. 22, no 1, p. 195-205
Keyword [en]
Microelectromechanical systems (MEMS), micromachining, stress compensation, transfer bonding
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-104306DOI: 10.1109/JMEMS.2012.2224642ISI: 000314726900027Scopus ID: 2-s2.0-84873288661OAI: oai:DiVA.org:kth-104306DiVA, id: diva2:563786
Note

QC 20130308

Available from: 2012-10-31 Created: 2012-10-31 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Monocrystalline-Silicon Based RF MEMS Devices
Open this publication in new window or tab >>Monocrystalline-Silicon Based RF MEMS Devices
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents novel radio-frequency microelectromechanical (RF MEMS) devices, for microwave and millimeter wave applications, designed for process robustness and operational reliability using monocrystalline silicon as structural material. Two families of RF MEMS devices are proposed. The first comprises reconfigurable microwave components integrated with coplanar-waveguide transmission lines in the device layer of silicon-on-insulator wafers. The second consists of analog tuneable millimeter wave high-impedance surface arrays.

The first group of reconfigurable microwave components presented in this thesis is based on a novel concept of integrating MEMS functionality into the sidewalls of three-dimensional micromachined transmission lines. A laterally actuated metal-contact switch was implemented, with the switching mechanism completely embedded inside the signal line of a coplanar-waveguide transmission line. The switch features zero power-consumption in both the on and the off state since it is mechanically bistable, enabled by interlocking hooks. Both two-port and three-port configurations are presented. Furthermore, tuneable capacitors based on laterally moving the ground planes in a micromachined coplanar-waveguide transmission line are demonstrated.

The second group of reconfigurable microwave components comprises millimeter-wave high-impedance surfaces. Devices are shown for reflective beam steering, reflective stub-line phase shifters and proximity based dielectric rod waveguide phase shifters, as well as a steerable leaky-wave antenna device based on the same geometry. Full wafer transfer bonding of symmetrically metallized monocrystalline silicon membranes, for near-ideal stress compensation, is used to create large arrays of distributed MEMS tuning elements. Furthermore, this thesis investigates the integration of reflective MEMS millimeter wave devices in rectangular waveguides using a conductive adhesive tape, and the integration of substrates with mismatched coefficients of thermal expansion.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. p. x, 67
Series
Trita-EE, ISSN 1653-5146 ; 2012:050
Keyword
RF MEMS, radio frequency, microelectromechanical system, microsystem technology, monocrystalline silicon, switch, tuneable capacitor, high-impedace surface, phase shifter, rectangular waveguide, transmission line
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-104314 (URN)978-91-7501-532-3 (ISBN)
Public defence
2012-11-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20121101

Available from: 2012-11-01 Created: 2012-10-31 Last updated: 2012-11-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sterner, MikaelOberhammer, Joachim
By organisation
Microsystem Technology (Changed name 20121201)
In the same journal
Journal of microelectromechanical systems
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf