Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Source identity and kernel functions for Inozemtsev-type systems
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Mathematical Physics.
2012 (English)In: Journal of Mathematical Physics, ISSN 0022-2488, E-ISSN 1089-7658, Vol. 53, no 8, 082105- p.Article in journal (Refereed) Published
Abstract [en]

The Inozemtsev Hamiltonian is an elliptic generalization of the differential operator defining the BCN trigonometric quantum Calogero-Sutherland model, and its eigenvalue equation is a natural many-variable generalization of the Heun differential equation. We present kernel functions for Inozemtsev Hamiltonians and Chalykh-Feigin-Veselov-Sergeev-type deformations thereof. Our main result is a solution of a heat-type equation for a generalized Inozemtsev Hamiltonian which is the source of all these kernel functions. Applications are given, including a derivation of simple exact eigenfunctions and eigenvalues of the Inozemtsev Hamiltonian.

Place, publisher, year, edition, pages
2012. Vol. 53, no 8, 082105- p.
Keyword [en]
Calogero-Sutherland Model, Many-Body Systems, Integrable Systems, Heun Equation, Lie-Algebras, Transformation, Polynomials, Separation, Quantum, Ansatz
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-104259DOI: 10.1063/1.4745001ISI: 000308409400005Scopus ID: 2-s2.0-84865796888OAI: oai:DiVA.org:kth-104259DiVA: diva2:563948
Funder
Swedish Research Council, 621-2010-3708
Note

QC 20121101

Available from: 2012-11-01 Created: 2012-10-31 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Langmann, Edwin
By organisation
Mathematical Physics
In the same journal
Journal of Mathematical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf