Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane: UV-blocking and the effect of cross-linking
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
2012 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 387, 135-140 p.Article in journal (Refereed) Published
Abstract [en]

Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (+/- 2.7) nm to 16 (+/- 7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified.

Place, publisher, year, edition, pages
2012. Vol. 387, 135-140 p.
Keyword [en]
Transmission, Absorption, Emission, Structure, Interface
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-104687DOI: 10.1016/j.jcis.2012.07.065ISI: 000309572100015Scopus ID: 2-s2.0-84866622544OAI: oai:DiVA.org:kth-104687DiVA: diva2:566785
Note

QC 20121109

Available from: 2012-11-09 Created: 2012-11-09 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Eita, MohamedEl Sayed, RamyMuhammed, Mamoun
By organisation
Functional Materials, FNM
In the same journal
Journal of Colloid and Interface Science
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf