Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reliability Analysis of Substation Automation Functions using PRMs
KTH, School of Electrical Engineering (EES), Industrial Information and Control Systems.
KTH, School of Electrical Engineering (EES), Industrial Information and Control Systems.ORCID iD: 0000-0003-3014-5609
KTH, School of Electrical Engineering (EES), Industrial Information and Control Systems.
2013 (English)In: IEEE Transactions on Smart Grid, ISSN 1949-3053, E-ISSN 1949-3061, Vol. 4, no 1, 206-213 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the application of a framework for reliability analysis of substation automation (SA) system functions. The framework is based on probabilistic relational models which combines probabilistic reasoning offered by Bayesian networks together with architecture models in form of entity relationship diagrams. In the analysis, both the physical infrastructure, and the logical structure of the system, is regarded in terms of qualitative modeling and quantitative analysis. Moreover, the framework treats the aspect of failures caused by software. An example is detailed with the framework applied to an IEC 61850-based SA system. The logical structure, including functions and their relations, is modeled in accordance with Pieces of Information for COMmunication (PICOM) defined in the IEC 61850 standard. By applying PICOMs as frame of reference when modeling functions the model instantiation becomes more standardized compared to subjectively defining functions. A quantitative reliability analysis is performed on a function for tipping a circuit breaker in case of mismatch between currents. The result is presented both in terms of a qualitative architecture model and a quantitative result showing the probability of successful operation during a period of one year.

Place, publisher, year, edition, pages
IEEE Press, 2013. Vol. 4, no 1, 206-213 p.
Keyword [en]
IEC 61850, PICOM, probabilistic relational models, reliability analysis, substation automation systems
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-105195DOI: 10.1109/TSG.2012.2225452ISI: 000325485600020Scopus ID: 2-s2.0-84874964237OAI: oai:DiVA.org:kth-105195DiVA: diva2:570291
Projects
Standupekc2
Funder
StandUp
Note

QC 20130318

Available from: 2013-03-18 Created: 2012-11-19 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Analyzing Substation Automation System Reliability using Probabilistic Relational Models and Enterprise Architecture
Open this publication in new window or tab >>Analyzing Substation Automation System Reliability using Probabilistic Relational Models and Enterprise Architecture
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern society is unquestionably heavily reliant on supply of electricity. Hence, the power system is one of the important infrastructures for future growth. However, the power system of today was designed for a stable radial flow of electricity from large power plants to the customers and not for the type of changes it is presently being exposed to, like large scale integration of electric vehicles, wind power plants, residential photovoltaic systems etc. One aspect of power system control particular exposed to these changes is the design of power system control and protection functionality. Problems occur when the flow of electricity changes from a unidirectional radial flow to a bidirectional. Such an implication requires redesign of control and protection functionality as well as introduction of new information and communication technology (ICT). To make matters worse, the closer the interaction between the power system and the ICT systems the more complex the matter becomes from a reliability perspective. This problem is inherently cyber-physical, including everything from system software to power cables and transformers, rather than the traditional reliability concern of only focusing on power system components.

The contribution of this thesis is a framework for reliability analysis, utilizing system modeling concepts that supports the industrial engineering issues that follow with the imple-mentation of modern substation automation systems. The framework is based on a Bayesian probabilistic analysis engine represented by Probabilistic Relational Models (PRMs) in com-bination with an Enterprise Architecture (EA) modeling formalism. The gradual development of the framework is demonstrated through a number of application scenarios based on substation automation system configurations.

This thesis is a composite thesis consisting of seven papers. Paper 1 presents the framework combining EA, PRMs and Fault Tree Analysis (FTA). Paper 2 adds primary substation equipment as part of the framework. Paper 3 presents a mapping between modeling entities from the EA framework ArchiMate and substation automation system configuration objects from the IEC 61850 standard. Paper 4 introduces object definitions and relations in coherence with EA modeling formalism suitable for the purpose of the analysis framework.

Paper 5 describes an extension of the analysis framework by adding logical operators to the probabilistic analysis engine. Paper 6 presents enhanced failure rates for software components by studying failure logs and an application of the framework to a utility substation automation system. Finally, Paper 7 describes the ability to utilize domain standards for coherent modeling of functions and their interrelations and an application of the framework utilizing software-tool support.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xiii, 44 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2014:021
Keyword
Reliability analysis, substation automation, Enterprise Architecture, probabilistic analysis, Probabilistic Relational Models, Bayesian networks, software reliability, failure rates, fault tree analysis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-145006 (URN)978-91-7595-131-7 (ISBN)
Public defence
2014-05-19, Q2, Osquldas väg 10, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140505

Available from: 2014-05-05 Created: 2014-05-05 Last updated: 2014-05-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Nordström, Lars

Search in DiVA

By author/editor
König, JohanNordström, LarsÖsterlind, Magnus
By organisation
Industrial Information and Control Systems
In the same journal
IEEE Transactions on Smart Grid
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1877 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf