Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pressure sensors based on suspended graphene membranes
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0003-4637-8001
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.ORCID iD: 0000-0003-1234-6060
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0003-3452-6361
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
Show others and affiliations
2013 (English)In: Solid-State Electronics, ISSN 0038-1101, E-ISSN 1879-2405, Vol. 88, 89-94 p.Article in journal (Refereed) Published
Abstract [en]

A novel pressure sensor based on a suspended graphene membrane is proposed. The sensing mechanism is explained based on tight binding calculations of strain-induced changes in the band structure. A CMOS compatible fabrication process is proposed and used to fabricate prototypes. Electrical measurement data demonstrates the feasibility of the approach, which has the advantage of not requiring a separate strain gauge, i.e. the strain gauge is integral part of the pressure sensor membrane. Hence, graphene membrane based pressure sensors can in principle be scaled quite aggressively in size.

Place, publisher, year, edition, pages
2013. Vol. 88, 89-94 p.
Keyword [en]
Graphene, Sensor, Pressure, Nanotechnology, NEMS and Nanoelectromechanical System, Piezoresistive
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-106199DOI: 10.1016/j.sse.2013.04.019ISI: 000323865300017Scopus ID: 2-s2.0-84884979426OAI: oai:DiVA.org:kth-106199DiVA: diva2:572961
Funder
EU, European Research Council, 277879 307311 228229
Note

QC 20131002. Updated from accepted to published.

Available from: 2012-11-29 Created: 2012-11-29 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Integration and Fabrication Techniques for 3D Micro- and Nanodevices
Open this publication in new window or tab >>Integration and Fabrication Techniques for 3D Micro- and Nanodevices
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of micro and nano-electromechanical systems (MEMS and NEMS) with entirely new or improved functionalities is typically based on novel or improved designs, materials and fabrication methods. However, today’s micro- and nano-fabrication is restrained by manufacturing paradigms that have been established by the integrated circuit (IC) industry over the past few decades. The exclusive use of IC manufacturing technologies leads to limited material choices, limited design flexibility and consequently to sub-optimal MEMS and NEMS devices. The work presented in this thesis breaks new ground with a multitude of novel approaches for the integration of non-standard materials that enable the fabrication of 3D micro and nanoelectromechanical systems. The objective of this thesis is to highlight methods that make use of non-standard materials with superior characteristics or methods that use standard materials and fabrication techniques in a novel context. The overall goal is to propose suitable and cost-efficient fabrication and integration methods, which can easily be made available to the industry.

The first part of the thesis deals with the integration of bulk wire materials. A novel approach for the integration of at least partly ferromagnetic bulk wire materials has been implemented for the fabrication of high aspect ratio through silicon vias. Standard wire bonding technology, a very mature back-end technology, has been adapted for yet another through silicon via fabrication method and applications including liquid and vacuum packaging as well as microactuators based on shape memory alloy wires. As this thesis reveals, wire bonding, as a versatile and highly efficient technology, can be utilized for applications far beyond traditional interconnections in electronics packaging.

The second part presents two approaches for the 3D heterogeneous integration based on layer transfer. Highly efficient monocrystalline silicon/ germanium is integrated on wafer-level for the fabrication of uncooled thermal image sensors and monolayer-graphene is integrated on chip-level for the use in diaphragm-based pressure sensors.

The last part introduces a novel additive fabrication method for layer-bylayer printing of 3D silicon micro- and nano-structures. This method combines existing technologies, including focused ion beam implantation and chemical vapor deposition of silicon, in order to establish a high-resolution fabrication process that is related to popular 3D printing techniques.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. xv, 91 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2013:001
Keyword
Microelectromechanical systems, MEMS, Nanoelectromechanical systems, NEMS, silicon, wafer-level, chip-level, through silicon via, TSV, packaging, 3D packaging, vacuum packaging, liquid encapsulation, integration, heterogeneous integration, wafer bonding, microactuators, shape memory alloy, SMA, wire bonding, magnetic assembly, self-assembly, 3D, 3D printing, focused ion beam, FIB
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-107125 (URN)978-91-7501-583-5 (ISBN)
Public defence
2013-01-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20121207

Available from: 2012-12-07 Created: 2012-12-06 Last updated: 2016-08-11Bibliographically approved
2. Graphene-based Devices for More than Moore Applications
Open this publication in new window or tab >>Graphene-based Devices for More than Moore Applications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Moore's law has defined the semiconductor industry for the past 50 years. Devices continue to become smaller and increasingly integrated into the world around us. Beginning with personal computers, devices have become integrated into watches, phones, cars, clothing and tablets among other things. These devices have expanded in their functionality as well as their ability to communicate with each other through the internet. Further, devices have increasingly been required to have diverse of functionality. This combination of smaller devices coupled with diversification of device functionality has become known as more than Moore. In this thesis, more than Moore applications of graphene are explored in-depth.

Graphene was discovered experimentally in 2004 and since then has fueled tremendous research into its various potential applications. Graphene is a desirable candidate for many applications because of its impressive electronic and mechanical properties. It is stronger than steel, the thinnest known material, and has high electrical conductivity and mobility. In this thesis, the potentials of graphene are examined for pressure sensors, humidity sensors and transistors.

Through the course of this work, high sensitivity graphene pressure sensors are developed. These sensors are orders of magnitude more sensitive than competing technologies such as silicon nanowires and carbon nanotubes. Further, these devices are small and can be scaled aggressively.

Research into these pressure sensors is then expanded to an exploration of graphene's gas sensing properties -- culminating in a comprehensive investigation of graphene-based humidity sensors. These sensors have rapid response and recovery times over a wide humidity range. Further, these devices can be integrated into CMOS processes back end of the line.

In addition to CMOS Integration of these devices, a wafer scale fabrication process flow is established. Both humidity sensors and graphene-based transistors are successfully fabricated on wafer scale in a CMOS compatible process. This is an important step toward both industrialization of graphene as well as heterogeneous integration of graphene devices with diverse functionality. Furthermore, fabrication of graphene transistors on wafer scale provides a framework for the development of statistical analysis software tailored to graphene devices.

In summary, graphene-based pressure sensors, humidity sensors, and transistors are developed for potential more than Moore applications. Further, a wafer scale fabrication process flow is established which can incorporate graphene devices into CMOS compatible process flows back end of the line.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. xxvi, 79 p.
Series
TRITA-ICT, 2016:17
Keyword
Graphene, Humidity Sensor, Pressure Sensor, GFET, CMOS, BEOL, More than Moore, Integration, Statistics
National Category
Engineering and Technology Nano Technology
Identifiers
urn:nbn:se:kth:diva-188134 (URN)978-91-7729-024-7 (ISBN)
Public defence
2016-08-26, Sal C, Isafjordsgatan 22, Electrum 229, 164-40, Kista, 10:00 (English)
Opponent
Supervisors
Note

QC 20160610

Available from: 2016-06-10 Created: 2016-06-06 Last updated: 2016-06-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Vaziri, SamFischer, Andreas C.Delin, Anna

Search in DiVA

By author/editor
Smith, Anderson D.Vaziri, SamFischer, Andreas C.Sterner, MikaelDelin, AnnaÖstling, MikaelLemme, Max
By organisation
Integrated Devices and CircuitsMicro and NanosystemsMaterials Science and Engineering
In the same journal
Solid-State Electronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 477 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf