Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers Ga1-xMnxAs/GaAs:Be
Show others and affiliations
2008 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 101, no 23Article in journal (Refereed) Published
Abstract [en]

We report the antiferromagnetic (AFM) interlayer exchange coupling between Ga0.97Mn0.03As ferromagnetic semiconductor layers separated by Be-doped GaAs spacers. Polarized neutron reflectivity reveals a characteristic splitting at the wave vector corresponding to twice the multilayer period, indicating that the coupling between the ferromagnetic layers is AFM. When the applied field is increased to above the saturation field, this AFM coupling is suppressed. This behavior is not observed when the spacers are undoped, suggesting that the observed AFM coupling is mediated by doped charge carriers. © 2008 The American Physical Society.

Place, publisher, year, edition, pages
2008. Vol. 101, no 23
Keyword [en]
Antiferromagnetic materials, Antiferromagnetism, Atomic force microscopy, Charge carriers, Civil aviation, Electric conductivity, Exchange coupling, Ferromagnetic materials, Ferromagnetism, Lanthanum compounds, Magnetic multilayers, Magnetic properties, Magnetic semiconductors, Multilayers, Semiconductor materials, Antiferromagnetic, Antiferromagnetic interlayers, Applied fields, Diluted magnetic semiconductors, Ferromagnetic layers, Ferromagnetic semiconductors, Interlayer exchange couplings, Polarized neutron reflectivities, Saturation fields, Wave vectors, Magnetic materials
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-105586DOI: 10.1103/PhysRevLett.101.237202ISI: 000261431200061OAI: oai:DiVA.org:kth-105586DiVA: diva2:573529
Note

References: Baibich, M.N., (1988) Phys. Rev. Lett., 61, p. 2472. , PRLTAO 0031-9007 10.1103/PhysRevLett.61.2472; Binasch, G., (1989) Phys. Rev. B, 39, p. 4828. , PRBMDO 0163-1829 10.1103/PhysRevB.39.4828; Grünberg, P., (1986) Phys. Rev. Lett., 57, p. 2442. , PRLTAO 0031-9007 10.1103/PhysRevLett.57.2442; Parkin, S.S., (1990) Phys. Rev. Lett., 64, p. 2304. , PRLTAO 0031-9007 10.1103/PhysRevLett.64.2304; Parkin, S.S., (1991) Phys. Rev. Lett., 67, p. 3598. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.3598; Bloemen, P.J., (1994) Phys. Rev. B, 50, p. 13505. , PRBMDO 0163-1829 10.1103/PhysRevB.50.13505; Borchers, J.A., (1999) Phys. Rev. Lett., 82, p. 2796. , PRLTAO 0031-9007 10.1103/PhysRevLett.82.2796; Rhyne, J.J., (1998) J. Magn. Magn. Mater., 177-181, p. 1195. , JMMMDC 0304-8853 10.1016/S0304-8853(97)00741-5; Kèpa, H., (2001) Europhys. Lett., 56, p. 54. , EULEEJ 0295-5075 10.1209/epl/i2001-00487-7; Kèpa, H., (2003) Phys. Rev. B, 68, p. 024419. , PRBMDO 0163-1829 10.1103/PhysRevB.68.024419; Kèpa, H., (2003) Physica (Amsterdam), 335, p. 44. , PHYBE3 0921-4526 10.1016/S0921-4526(03)00188-1; Jungwirth, T., (2006) Rev. Mod. Phys., 78, p. 809. , RMPHAT 0034-6861 10.1103/RevModPhys.78.809; Beschoten, B., (1999) Phys. Rev. Lett., 83, p. 3073. , PRLTAO 0031-9007 10.1103/PhysRevLett.83.3073; Blinowski, J., Kacman, P., (2003) Phys. Rev. B, 67, pp. 121204R. , PRBMDO 0163-1829 10.1103/PhysRevB.67.121204; Munekata, H., (1989) Phys. Rev. Lett., 63, p. 1849. , PRLTAO 0031-9007 10.1103/PhysRevLett.63.1849; Ohno, H., (1992) Phys. Rev. Lett., 68, p. 2664. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.2664; Ohno, H., (1996) Appl. Phys. Lett., 69, p. 363. , APPLAB 0003-6951 10.1063/1.118061; Hayashi, T., (1997) J. Cryst. Growth, 175-176, p. 1063. , JCRGAE 0022-0248 10.1016/S0022-0248(96)00937-2; Kèpa, H., (2001) Phys. Rev. B, 64, p. 121302. , PRBMDO 0163-1829 10.1103/PhysRevB.64.121302; Kirby, B.J., (2007) Phys. Rev. B, 76, p. 205316. , PRBMDO 0163-1829 10.1103/PhysRevB.76.205316; Jungwirth, T., (1999) Phys. Rev. B, 59, p. 9818. , PRBMDO 0163-1829 10.1103/PhysRevB.59.9818; Sankowski, P., Kacman, P., (2005) Phys. Rev. B, 71, pp. 201303R. , PRBMDO 0163-1829 10.1103/PhysRevB.71.201303; Giddings, A.D., (2006) Phys. Status Solidi C, 3, p. 4070. , PSSCGL 1610-1634 10.1002/pssc.200672834; Ge, Z., (2007) Appl. Phys. Lett., 91, p. 152109. , APPLAB 0003-6951 10.1063/1.2799238; Kirby, B.J., (2008) J. Appl. Phys., 103, pp. 07D116. , JAPIAU 0021-8979 10.1063/1.2838236; Shin, D.Y., (2007) Phys. Rev. B, 76, p. 035327. , PRBMDO 0163-1829 10.1103/PhysRevB.76.035327; Majkrzak, C.F., (1991) Physica (Amsterdam), 173, p. 75. , PHYBE3 0921-4526 10.1016/0921-4526(91)90037-F; Kienzle, P.A., (2000), http://www.ncnr.nist.gov/reflpakPotashnik, S.J., (2002) Phys. Rev. B, 66, p. 012408. , PRBMDO 0163-1829 10.1103/PhysRevB.66.012408; Welp, U., (2003) Phys. Rev. Lett., 90, p. 167206. , PRLTAO 0031-9007 10.1103/PhysRevLett.90.167206; Bruno, P., Chappert, C., (1991) Phys. Rev. Lett., 67, p. 1602. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.1602; Lee, S., (2003) J. Appl. Phys., 93, p. 8307. , JAPIAU 0021-8979 10.1063/1.1556272; Wojtowicz, T., (2003) Appl. Phys. Lett., 83, p. 4220. , APPLAB 0003-6951 10.1063/1.1628815

QC 20130513

Available from: 2012-11-30 Created: 2012-11-22 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Chung, S. J.
In the same journal
Physical Review Letters
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf