Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Convexity Of The Free Boundary For An Exterior Free Boundary Problem Involving The Perimeter
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-1316-7913
2013 (English)In: Communications on Pure and Applied Analysis, ISSN 1534-0392, E-ISSN 1553-5258, Vol. 12, no 3, 1431-1443 p.Article in journal (Refereed) Published
Abstract [en]

We prove that if the given compact set K is convex then a minimizer of the functional I(v) = integral(BR) vertical bar del v vertical bar(p)dx + Per({v > 0}), 1 < p < infinity, over the set {v epsilon W-0(1,P)(BR)vertical bar v 1 on K subset of BR} has a convex support, and as a result all its level sets are convex as well. We derive the free boundary condition for the minimizers and prove that the free boundary is analytic and the minimizer is unique.

Place, publisher, year, edition, pages
2013. Vol. 12, no 3, 1431-1443 p.
Keyword [en]
Free boundary problems, mean curvature
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-106109DOI: 10.3934/cpaa.2013.12.1431ISI: 000310647400019Scopus ID: 2-s2.0-84873316680OAI: oai:DiVA.org:kth-106109DiVA: diva2:573608
Note

QC 20121203

Available from: 2012-12-03 Created: 2012-11-29 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Shahgholian, Henrik

Search in DiVA

By author/editor
Shahgholian, Henrik
By organisation
Mathematics (Div.)
In the same journal
Communications on Pure and Applied Analysis
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf