Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal PowerFlow (OPF) Model with Unified AC-DC Load Flow and Optimal Commitmentfor an AC-catenary Railway Power Supply System (RPSS) fed by aHigh Voltage DC (HVDC) transmission line
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0003-2109-060X
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0001-7330-146X
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0002-8189-2420
2012 (English)Article in journal (Refereed) Submitted
Abstract [en]

In this paper an alternative railway power systems design based on an HVDC feeder is studied. The HVDC feeder is connected to the catenary by converters. Such an HVDC line is also appropriate for DC-fed railways and AC-fed railways working at public frequency. A unit commitment optimal power flow model has been developed and is applied on a test system. In this paper, the model is presented in detail. The model, in the form of an MINLP program, uses unified AC-DC power flow to minimize the entire railway power system losses. Simulations of the proposed solution show clear advantages regarding transmission losses and voltages compared to conventional systems, especially for cases with long distances between feeding points to the catenary, and when there are substantial amounts of regeneration from the trains.

Place, publisher, year, edition, pages
IEEE Press, 2012.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-107031OAI: oai:DiVA.org:kth-107031DiVA: diva2:574487
Note

QS 2012

Available from: 2012-12-06 Created: 2012-12-05 Last updated: 2013-02-22Bibliographically approved
In thesis
1. Optimal Railroad Power Supply System Operation and Design: Detailed system studies, and aggregated investment models
Open this publication in new window or tab >>Optimal Railroad Power Supply System Operation and Design: Detailed system studies, and aggregated investment models
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Railway power supply systems (RPSSs) differ mainly from public power systems from that the loads are moving. These moving loads are motoring trains. Trains can also be regenerating when braking and are then power sources. These loads consume comparatively much power, causing substantial voltage drops, not rarely so big that the loads are reduced. By practical reasons most RPSSs are single-phase AC or DC. Three-phase public grid power is either converted into single-phase for feeding the railway or the RPSS is compartmentalized into separate sections fed individually from alternating phase-pairs of the public grid. The latter is done in order not to overload any public grid phase unnecessarily much.

This thesis summarizes various ways of optimally operating or designing the railway power supply system. The thesis focuses on converter-fed railways for the reasons that they are more controllable, and also has a higher potential for the future. This is also motivated in a literature-reviewing based paper arguing for the converter usage potential. Moreover, converters of some kind have to be used when the RPSS uses DC or different AC frequency than the public grid.

The optimal operation part of this thesis is mainly about the optimal power flow controls and unit commitments of railway converter stations in HVDC-fed RPSSs. The models are easily generalized to different feeding, and they cope with regenerative braking. This part considers MINLP (mixed integer nonlinear programming) problems, and the main part of the problem is non-convex nonlinear. The concept is presented in one paper. The subject of how to model the problem formulations have been treated fully in one paper.

The thesis also includes a conference article and a manuscript for an idea including the entire electric train driving strategy in an optimization problem considering power system and mechanical couplings over time. The latter concept is a generalized TPSS (Train Power Systems Simulator), aiming for more detailed studies, whereas TPSS is mainly for dimensioning studies. The above optimal power flow models may be implemented in the entire electric train driving strategy model.

The optimal design part of this thesis includes two aggregation models for describing reduction in train traffic performance. The first one presented in a journal, and the second one, adapted more useful with different simulation results was presented at a conference. It also includes an early model for optimal railway power converter placements.

The conclusions to be made are that the potential for energy savings by better operation of the railway power system is great. Another conclusion is that investment planning models for railway power systems have a high development potential. RPSS planning models are computationally more attractive, when aggregating power system and train traffic details.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. xii, 77 p.
Series
Trita-EE, ISSN 1653-5146 ; 2012:062
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-107037 (URN)978-91-7501-584-2 (ISBN)
Public defence
2012-12-17, sal Q2, Osquldasväg 10, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20121206

Available from: 2012-12-06 Created: 2012-12-05 Last updated: 2013-02-25Bibliographically approved

Open Access in DiVA

fulltext(225 kB)1176 downloads
File information
File name FULLTEXT01.pdfFile size 225 kBChecksum SHA-512
4b7de202d8dec9b569a6d90971d60e3f35a22efb8132f1c145c2b4d0b48c90db7c9bb1f5ee7fd43a5190da025dc7e22846d55ef4e0147ea78e5975623c3dc56d
Type fulltextMimetype application/pdf

Authority records BETA

Abrahamsson, LarsÖstlund, StefanSöder, Lennart

Search in DiVA

By author/editor
Abrahamsson, LarsÖstlund, StefanSöder, Lennart
By organisation
Electric Power SystemsElectrical Energy Conversion
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1176 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 761 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf