Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Group III-A XTH Genes of Arabidopsis Encode Predominant Xyloglucan Endohydrolases That Are Dispensable for Normal Growth
KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
Show others and affiliations
2013 (English)In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 161, no 1, 440-454 p.Article in journal (Refereed) Published
Abstract [en]

The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin beta-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.

Place, publisher, year, edition, pages
2013. Vol. 161, no 1, 440-454 p.
Keyword [en]
Plant-Cell Walls, Pea Stem Segments, Enzymatic-Properties, Structural-Analysis, Beta-Galactosidase, Crystal-Structures, Flowering Plants, Hypocotyl Growth, Pichia-Pastoris, Hybrid Aspen
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-108074DOI: 10.1104/pp.112.207308ISI: 000312964000035Scopus ID: 2-s2.0-84871817930OAI: oai:DiVA.org:kth-108074DiVA: diva2:578847
Funder
Swedish Foundation for Strategic Research Swedish Research CouncilFormas
Note

QC 20130110

Available from: 2012-12-19 Created: 2012-12-19 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Ezcurra, Ines

Search in DiVA

By author/editor
Kaewthai, NomchitEklöf, Jens M.Ibatullin, Farid M.Ezcurra, InesBrumer, Harry
By organisation
GlycoscienceAlbanova VinnExcellence Center for Protein Technology, ProNova
In the same journal
Plant Physiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf