CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Spectral analysis of the transition to turbulence from a dipole in stratified fluidPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2012 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 713, p. 86-108Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 713, p. 86-108
##### Keywords [en]

instability, stratified flows, transition to turbulence
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:kth:diva-109604DOI: 10.1017/jfm.2012.437ISI: 000311889500005Scopus ID: 2-s2.0-84870779460OAI: oai:DiVA.org:kth-109604DiVA, id: diva2:583775
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt451",{id:"formSmash:j_idt451",widgetVar:"widget_formSmash_j_idt451",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt457",{id:"formSmash:j_idt457",widgetVar:"widget_formSmash_j_idt457",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true});
##### Note

We investigate the spectral properties of the turbulence generated during the nonlinear evolution of a Lamb-Chaplygin dipole in a stratified fluid for a high Reynolds number Re = 28 000 and a wide range of horizontal Froude number F-h epsilon [0.0225 0.135] and buoyancy Reynolds number R = ReFh2 epsilon [14 510]. The numerical simulations use a weak hyperviscosity and are therefore almost direct numerical simulations (DNS). After the nonlinear development of the zigzag instability, both shear and gravitational instabilities develop and lead to a transition to small scales. A spectral analysis shows that this transition is dominated by two kinds of transfer: first, the shear instability induces a direct non-local transfer toward horizontal wavelengths of the order of the buoyancy scale L-b = U/N, where U is the characteristic horizontal velocity of the dipole and N the Brunt-Vaisala frequency; second, the destabilization of the Kelvin-Helmholtz billows and the gravitational instability lead to small-scale weakly stratified turbulence. The horizontal spectrum of kinetic energy exhibits epsilon(2/3)(K)k(h)(-5/3) power law (where k(h) is the horizontal wavenumber and epsilon(K) is the dissipation rate of kinetic energy) from k(b) = 2 pi/L-b to the dissipative scales, with an energy deficit between the integral scale and k(b) and an excess around k(b). The vertical spectrum of kinetic energy can be expressed as E(k(z)) = C(N)N(2)k(z)(-3) + C epsilon(2/3)(K)k(z)(-5/3) where C-N and C are two constants of order unity and k(z) is the vertical wavenumber. It is therefore very steep near the buoyancy scale with an N(2)k(z)(-3) shape and approaches the epsilon(2/3)(K)k(z)(-5/3) spectrum for k(z) > k(o), k(o) being the Ozmidov wavenumber, which is the cross-over between the two scaling laws. A decomposition of the vertical spectra depending on the horizontal wavenumber value shows that the N(2)k(z)(-3) spectrum is associated with large horizontal scales vertical bar k(h)vertical bar < k(b) and the epsilon(2/3)(K)k(z)(-5/3) spectrum with the scales vertical bar k(h)vertical bar > k(b).

QC 20130108

Available from: 2013-01-08 Created: 2013-01-08 Last updated: 2017-12-06Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1176",{id:"formSmash:j_idt1176",widgetVar:"widget_formSmash_j_idt1176",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1230",{id:"formSmash:lower:j_idt1230",widgetVar:"widget_formSmash_lower_j_idt1230",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1231_j_idt1233",{id:"formSmash:lower:j_idt1231:j_idt1233",widgetVar:"widget_formSmash_lower_j_idt1231_j_idt1233",target:"formSmash:lower:j_idt1231:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});