Change search
ReferencesLink to record
Permanent link

Direct link
Casimir attractive-repulsive transition in MEMS
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
Show others and affiliations
2012 (English)In: European Physical Journal B: Condensed Matter Physics, ISSN 1434-6028, E-ISSN 1434-6036, Vol. 85, no 11, 377- p.Article in journal (Refereed) Published
Abstract [en]

Unwanted stiction in micro-and nanomechanical (NEMS/MEMS) systems due to dispersion (van der Waals, or Casimir) forces is a significant hurdle in the fabrication of systems with moving parts on these length scales. Introducing a suitably dielectric liquid in the interspace between bodies has previously been demonstrated to render dispersion forces repulsive, or even to switch sign as a function of separation. Making use of recently available permittivity data calculated by us we show that such a remarkable nonmonotonic Casimir force, changing from attractive to repulsive as separation increases, can in fact be observed in systems where constituent materials are in standard NEMS/MEMS use requiring no special or exotic materials. No such nonmonotonic behaviour has been measured to date. We calculate the force between a silica sphere and a flat surface of either zinc oxide or hafnia, two materials which are among the most prominent for practical microelectrical and microoptical devices. Our results explicate the need for highly accurate permittivity functions of the materials involved for frequencies from optical to far-infrared frequencies. A careful analysis of the Casimir interaction is presented, and we show how the change in the sign of the interaction can be understood as a result of multiple crossings of the dielectric functions of the three media involved in a given set-up.

Place, publisher, year, edition, pages
2012. Vol. 85, no 11, 377- p.
Keyword [en]
Der-Waals Forces, Mu-M Range, Hydrocarbon Adsorption, Lifshitz Theory, Liquid Helium, Alpha-Quartz, Silica, Films, Dependence, Surfaces
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-110076DOI: 10.1140/epjb/e2012-30794-5ISI: 000312205400018OAI: diva2:585448
Swedish Research Council, 90499401 70529001

QC 20130110

Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2013-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Boström, MathiasDou, MaofengPersson, Clas
By organisation
Materials Science and EngineeringApplied Material Physics
In the same journal
European Physical Journal B: Condensed Matter Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link