Change search
ReferencesLink to record
Permanent link

Direct link
Dye-Sensitized Solar Cells Based on a Donor-Acceptor System with a Pyridine Cation as an Electron-Withdrawing Anchoring Group
Show others and affiliations
2012 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 50, 16196-16202 p.Article in journal (Refereed) Published
Abstract [en]

New hemicyanine dyes (CM101, CM102, CM103, and CM104) in which tetrahydroquinoline derivatives are used as electron donors and N-(carboxymethyl)-pyridinium is used as an electron acceptor and anchoring group were designed and synthesized for dye-sensitized solar cells (DSSCs). Compared with corresponding dyes that have cyanoacetic acid as the acceptor, N-(carboxymethyl)-pyridinium has a stronger electron-withdrawing ability, which causes the absorption maximum of dyes to be redshifted. The photovoltaic performance of the DSSCs based on dyes CM101CM104 markedly depends on the molecular structures of the dyes in terms of the n-hexyl chains and methoxyl. The device sensitized by dye CM104 achieved the best conversion efficiency of 7.0?% (Jsc=13.4 mA?cm-2, Voc=704 mV, FF=74.8?%) under AM 1.5 irradiation (100 mW?cm-2). In contrast, the device sensitized by reference dye CMR104 with the same donor but the cyanoacetic acid as the acceptor gave an efficiency of 3.4?% (Jsc=6.2 mA?cm-2, Voc=730 mV, FF=74.8?%). Under the same conditions, the cell fabricated with N719 sensitized porous TiO2 exhibited an efficiency of 7.9?% (Jsc=15.4 mA?cm-2, Voc=723 mV, FF=72.3?%). The dyes CM101CM104 show a broader spectral response compared with the reference dyes CMR101CMR104 and have high IPCE exceeding 90?% from 450 to 580 nm. Considering the reflection of sunlight, the photoelectric conversion efficiency could be almost 100?% during this region.

Place, publisher, year, edition, pages
2012. Vol. 18, no 50, 16196-16202 p.
Keyword [en]
cyanoacetic acid, donor-acceptor systems, dyes/pigments, pyridine cation, sensitizers
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-110065DOI: 10.1002/chem.201200826ISI: 000312163500036ScopusID: 2-s2.0-84870583875OAI: diva2:585557
Knut and Alice Wallenberg Foundation

QC 20130110

Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2013-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Chemistry - A European Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link