Change search
ReferencesLink to record
Permanent link

Direct link
Rotational effects on the negative magnetic pressure instability
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.ORCID iD: 0000-0002-7304-021X
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.ORCID iD: 0000-0001-6162-7112
Show others and affiliations
2012 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 548, A49- p.Article in journal (Refereed) Published
Abstract [en]

Context. The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-scale instability resulting in the formation of nonuniform magnetic structures, can be excited on the scale of many (more than ten) turbulent eddies (or convection cells). This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions. Aims. We want to understand the effects of rotation on this instability in both two and three dimensions. Methods. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to agree with properties of direct numerical simulations. Results. We find that the instability is already suppressed for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with propagation in the prograde direction at the equator with additional poleward migration away from the equator. Conclusions. We speculate that the prograde rotation of the magnetic pattern near the equator might be a possible explanation for the faster rotation speed of magnetic tracers relative to the plasma velocity on the Sun. In the bulk of the domain, kinetic and current helicities are negative in the northern hemisphere and positive in the southern.

Place, publisher, year, edition, pages
2012. Vol. 548, A49- p.
Keyword [en]
magnetohydrodynamics (MHD), hydrodynamics, turbulence, dynamo
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-110063DOI: 10.1051/0004-6361/201220078ISI: 000311901200049ScopusID: 2-s2.0-84870019122OAI: diva2:585586
EU, European Research Council, 227952 227915

QC 20130110

Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2013-08-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Brandenburg, AxelKleeorin, NathanMitra, DhrubadityaRogachevskii, Igor
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link