Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integration design of membrane electrode assemblies in low temperature solid oxide fuel cell
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
Show others and affiliations
2012 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 37, no 24, 19365-19370 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, an integration design of membrane electrode assemblies in low temperature solid oxide fuel cells (LTSOFCs) is accomplished by using a mixed ionic-electronic conductor. The mixed ionic-electronic conductor is a composite material, LiNiCuZn oxides, Gd2O3 and Sm-doped CeO2 composited with Na2CO3 (LiNiCuZn oxides-NGSDC), which consists of ionic conductor, n-type and p-type semiconductors. The multi-phase composite material can also be used in single layer fuel cell (SLFC) to replace single-phase materials. A SLFC using the LiNiCuZn oxides-NSGDC composite exhibits an OCV of 1.05 V and maximum power density of 800 mW cm-2, which is comparable to the cell performance of conventional LTSOFCs and much higher than that of SLFC reported before. The reasons leading to the good performance are porous structure of electrode and the matching of ionic conductor and semiconductor.

Place, publisher, year, edition, pages
2012. Vol. 37, no 24, 19365-19370 p.
Keyword [en]
Integration design, Low temperature solid oxide fuel cell, Mixed ionic-electronic conductors, Single layer
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-110196DOI: 10.1016/j.ijhydene.2011.10.065ISI: 000313923900086Scopus ID: 2-s2.0-84869802244OAI: oai:DiVA.org:kth-110196DiVA: diva2:586437
Note

QC 20130111

Available from: 2013-01-11 Created: 2013-01-10 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Qin, HaiyingZhu, BinRaza, RizwanFan, Liangdong
By organisation
Energy TechnologyHeat and Power Technology
In the same journal
International journal of hydrogen energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf