CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt171",{id:"formSmash:upper:j_idt171",widgetVar:"widget_formSmash_upper_j_idt171",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt173_j_idt175",{id:"formSmash:upper:j_idt173:j_idt175",widgetVar:"widget_formSmash_upper_j_idt173_j_idt175",target:"formSmash:upper:j_idt173:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Large deviations for weighted empirical measures arising in importance samplingPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Stochastic Processes and their Applications, ISSN 0304-4149, E-ISSN 1879-209X, Vol. 126, no 1Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2016. Vol. 126, no 1
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:kth:diva-117805DOI: 10.1016/j.spa.2015.08.002ISI: 000366535500006Scopus ID: 2-s2.0-84948440031OAI: oai:DiVA.org:kth-117805DiVA: diva2:603116
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt481",{id:"formSmash:j_idt481",widgetVar:"widget_formSmash_j_idt481",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt487",{id:"formSmash:j_idt487",widgetVar:"widget_formSmash_j_idt487",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt493",{id:"formSmash:j_idt493",widgetVar:"widget_formSmash_j_idt493",multiple:true});
##### Note

##### In thesis

Importance sampling is a popular method for efficient computation of various properties of a distribution such as probabilities, expectations, quantiles etc. The output of an importance sampling algorithm can be represented as a weighted empirical measure, where the weights are given by the likelihood ratio between the original distribution and the sampling distribution. In this paper the efficiency of an importance sampling algorithm is studied by means of large deviations for the weighted empirical measure. The main result, which is stated as a Laplace principle for the weighted empirical measure arising in importance sampling, can be viewed as a weighted version of Sanov's theorem. The main theorem is applied to quantify the performance of an importance sampling algorithm over a collection of subsets of a given target set as well as quantile estimates. The proof of the main theorem relies on the weak convergence approach to large deviations developed by Dupuis and Ellis.

QC 20160115

Available from: 2013-02-05 Created: 2013-02-05 Last updated: 2017-12-06Bibliographically approved1. Large deviations for weighted empirical measures and processes arising in importance sampling$(function(){PrimeFaces.cw("OverlayPanel","overlay603126",{id:"formSmash:j_idt787:0:j_idt792",widgetVar:"overlay603126",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On large deviations and design of efficient importance sampling algorithms$(function(){PrimeFaces.cw("OverlayPanel","overlay713478",{id:"formSmash:j_idt787:1:j_idt792",widgetVar:"overlay713478",target:"formSmash:j_idt787:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1285",{id:"formSmash:j_idt1285",widgetVar:"widget_formSmash_j_idt1285",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1352",{id:"formSmash:lower:j_idt1352",widgetVar:"widget_formSmash_lower_j_idt1352",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1353_j_idt1355",{id:"formSmash:lower:j_idt1353:j_idt1355",widgetVar:"widget_formSmash_lower_j_idt1353_j_idt1355",target:"formSmash:lower:j_idt1353:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});