Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oscillatory motion of a spherical bubble in a non-Newtonian fluid
University of Brasília.
2013 (English)In: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 191, 35-44 p.Article in journal (Refereed) Published
Abstract [en]

The motion of a spherical bubble in a nonlinear viscoelastic media subjected to an acoustic pressure field is considered. The ambient fluid is composed of a Newtonian liquid in which additives at small volume fraction are diluted. The contribution of the additives with high aspect ratio brings strong anisotropy and is described by an extensional viscosity. The elastic effect is presented by the relaxation time of the additives. A lower convected Maxwell model is adopted to describe the viscoelastic properties, resulting in a modified Rayleigh-Plesset equation. The set of governing equations does not require a numerical solution for the space domain. Non-linear radial oscillations of a single bubble are obtained numerically using a fifth order Runge-Kutta scheme with adaptive time step. The results predict an extra anisotropy for a Deborah number regime De∼. 1, due to stretched additives, which contributes to bubble motion stabilization. Under this condition, the relaxation time is greater than the time scale of the flow, where no interaction between the elastic effect of the additives and the motion of the bubble is found. However, for De∼. 0.1 we observe an increase of vibrational modes on the frequency domain and higher bubble internal pressure, which may lead to collapse occurrence. The decrease in the volume fraction of the additives also shows significant variation of bubble oscillations as the elastic effect has a proportionally larger contribution than the anisotropic effect. Other results and considerations regarding relevant parameters are also discussed.

Place, publisher, year, edition, pages
2013. Vol. 191, 35-44 p.
Keyword [en]
Anisotropy, Bubble dynamics, Nonlinear oscillation, Viscoelasticity
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-117845DOI: 10.1016/j.jnnfm.2012.10.010ISI: 000314440100004Scopus ID: 2-s2.0-84870654114OAI: oai:DiVA.org:kth-117845DiVA: diva2:603219
Note

QC 20130205

Available from: 2013-02-05 Created: 2013-02-05 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lima Albernaz, Daniel
In the same journal
Journal of Non-Newtonian Fluid Mechanics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf