Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-sensitization of organic dyes for efficient dye-sensitized solar cells
Show others and affiliations
2013 (English)In: ChemSusChem, ISSN 1864-5631, Vol. 6, no 1, 70-77 p.Article in journal (Refereed) Published
Abstract [en]

Novel cyanine dyes, in which a tetrahydroquinoline derivative is used as an electron donor and 1-butyl-5-carboxy-3, 3-dimethyl-indol-1-ium moiety is used as an electron acceptor and anchoring group, were designed and synthesized for application in dye-sensitized solar cells. The photovoltaic performance of these solar cells depends markedly on the molecular structure of the dyes in terms of the n-hexyl chains and the methoxyl unit. Retardation of charge recombination caused by the introduction of n-hexyl chains resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V oc) was achieved. Also, the electron injection efficiencies were improved by the introduction of methoxyl moiety, which led to a higher short-circuit photocurrent density (Jsc). The highest average efficiency of the sensitized devices (η) was 5.6 % (Jsc=13.3 mA cm-2, Voc=606 mV, and fill factor FF=69.1 %) under 100 mW cm-2 (AM 1.5G) solar irradiation. All of these dyes have very high absorption extinction coefficients and strong absorption in a relatively narrow spectrum range (500-650 nm), so one of our organic dyes was explored as a sensitizer in co-sensitized solar cells in combination with the other two other existing organic dyes. Interestingly, a considerably improved photovoltaic performance of 8.2 % (Jsc=20.1 mA cm-2, Voc=597 mV, and FF=68.3 %) was achieved and the device showed a panchromatic response with a high incident photon-to-current conversion efficiency exceeding 85 % in the range of 400-700 nm. Sensitive dyes absorb it all: Co-sensitization of three spectrally complementary dyes on a TiO2 film in a well-designed sequence significantly improves the photovoltaic performance of the device, and an efficiency of 8.2 % is achieved. The devices demonstrate a panchromatic response with an incident photon-to-current conversion efficiency >80 % over the entire visible spectral region from 400 to 700 nm.

Place, publisher, year, edition, pages
2013. Vol. 6, no 1, 70-77 p.
Keyword [en]
cyanines, dyes/pigments, sensitizers, solar cells
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-117827DOI: 10.1002/cssc.201200655ISI: 000313702200011OAI: oai:DiVA.org:kth-117827DiVA: diva2:603855
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20130207

Available from: 2013-02-07 Created: 2013-02-05 Last updated: 2013-02-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic ChemistryCentre of Molecular Devices, CMD
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf