Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Half-duplex relaying over slow fading channels based on quantize-and-forward
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-7926-5081
2013 (English)In: IEEE Transactions on Information Theory, ISSN 0018-9448, E-ISSN 1557-9654, Vol. 59, no 2, 860-872 p.Article in journal (Refereed) Published
Abstract [en]

The focus of this paper is to study the performance of the quantize-and-forward (QF) scheme over a half-duplex relay channel that is slowly fading, with the assumption that the channel state information (CSI) is available only at the receiver side. In order to do so, three steps are taken. The first step is to characterize the achievable rate of the QF scheme over a discrete memoryless half-duplex relay channel. Then, the achievable rate over a corresponding additive white Gaussian noise channel is obtained (the specific assumption regarding the CSI in this paper makes this step nontrivial). With the results from the first two steps, performance measures such as outage probability, expected rate, and diversity-multiplexing tradeoff (DMT) over slow fading channels are evaluated. It is shown that the QF scheme can significantly outperform the compress-and-forward scheme at finite signal-to-noise ratio (SNR) and it can achieve the optimal DMT at asymptotically high SNR. Moreover, it is shown that simple feedback from the destination node to the relay node can further improve the performance of the QF scheme.

Place, publisher, year, edition, pages
2013. Vol. 59, no 2, 860-872 p.
Keyword [en]
Half-duplex relay channels, outage probability, partial feedback, quantize-and-forward (QF), slow fading channels
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-118187DOI: 10.1109/TIT.2012.2224318ISI: 000313728800009Scopus ID: 2-s2.0-84872558650OAI: oai:DiVA.org:kth-118187DiVA: diva2:605519
Funder
Swedish Research CouncilVinnova
Note

QC 20130214

Available from: 2013-02-14 Created: 2013-02-13 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Skoglund, Mikael

Search in DiVA

By author/editor
Yao, ShaSkoglund, Mikael
By organisation
Communication TheoryACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Information Theory
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf