Change search
ReferencesLink to record
Permanent link

Direct link
Coolability of heat-releasing debris bed. Part 1: Sensitivity analysis and model calibration
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-0683-9136
2013 (English)In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 52, no SI, 59-71 p.Article in journal (Refereed) Published
Abstract [en]

Coolability of heat-releasing debris bed is an important issue in the severe accident analysis and management. Traditionally, theoretical studies of top or bottom-fed debris bed coolability have been focused on obtaining a "best estimate" value for the Dryout Heat Flux (DHF) as a function of debris bed parameters (mean particle diameter and porosity). However, an important question for safety analysis is the quantification of uncertainties inherent in the problem. In this paper, a one-dimensional coolability problem is considered, with the aim of analyzing the influence of aleatory uncertainties in input physical parameters and modeling (epistemic) uncertainties on the prediction of DHF. Global sensitivity analysis is applied to rank the aleatory and epistemic parameters according to their effects on DHF and average pressure drop. The most influential model parameters are then calibrated to achieve the best fit to experimental data available. On the one hand, we demonstrate that model calibration is instrumental in achieving considerable improvement of quantitative agreement between the experimental and simulation data. On the other hand, experience of model calibration also suggested that (i) optimization of model parameters with respect to available experimental data on DHF is an ill-posed problem, and (ii) model calibration with respect to one-dimensional pressure drop experiments does not automatically improve the prediction of DHF and in some cases can even worsen it. Based on these insights, one can speculate that further analytical and experimental efforts are necessary to establish a better consistency between model form and experimental data on pressure drop and DHF.

Place, publisher, year, edition, pages
2013. Vol. 52, no SI, 59-71 p.
Keyword [en]
Debris bed coolability, Drag model, Sensitivity analysis, Two phase flow
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-118308DOI: 10.1016/j.anucene.2012.06.024ISI: 000313997700007ScopusID: 2-s2.0-84870411230OAI: diva2:605712
EU, European Research Council

QC 20130215

Available from: 2013-02-15 Created: 2013-02-14 Last updated: 2013-02-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kudinov, Pavel
By organisation
Nuclear Power Safety
In the same journal
Annals of Nuclear Energy
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link