Change search
ReferencesLink to record
Permanent link

Direct link
Mechanisms of asphalt blistering on concrete bridges
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
2012 (English)In: Durability of building and construction sealants and adhesives: 4th volume, ASTM International, 2012, 308-330 p.Conference paper (Refereed)
Abstract [en]

Blistering is a major problem in asphalt-covered concrete structures, such as multi-storage parking buildings, built-up roofs, tunnels, pedestrian areas, or concrete bridge decks. In this particular research, a linear viscoelastic finite-element model is developed to simulate time-dependent blister growth in an asphalt layer under uniformly applied pressure with and without temperature and pressure fluctuation. Indirect tensile tests on mastic asphalt (MA) are performed at three different temperatures to characterize and determine the material properties for the model. A three-dimensional thick-plate axisymmetric finite-element model is developed using ABAQUS with linear viscoelastic properties and validated with closed-form solution from first-order shear-deformation theory for thick plates. Elastic-viscoelastic analogy is used to find an analytic solution for the time-dependent deflection of the blister. In addition, the blister test is conducted on different samples of MA in the laboratory and digital correlation measurement technique is used to capture the three-dimensional vertical deflection of the MA with time. Finally, the results from image correlation are compared with the finite-element simulation and thick-plate theory analytic solution. The finite-element model simulation shows that the daily temperature variations may have a significant influence on blister growth in asphalt pavements. It is found that the blister can grow continuously under repeated loading conditions over subsequent days. The study concludes that temperature fluctuation in the blister has more influence on blister growth than fluctuation of the pressure inside the blister.

Place, publisher, year, edition, pages
ASTM International, 2012. 308-330 p.
, ASTM Special Technical Publication, ISSN 0066-0558 ; 1545 STP
Keyword [en]
ABAQUS™, Blister growth, Closed-form solution, Creep, Finite-element method, Indirect tensile test, Master curve, Prony series, Relaxation, Sigmoidal function
National Category
Infrastructure Engineering
URN: urn:nbn:se:kth:diva-118380ScopusID: 2-s2.0-84873433839ISBN: 978-080317531-0OAI: diva2:606162
4th Durability of Building and Construction Sealants and Adhesives, 16 June 2011 through 17 June 2011, Anaheim, CA

QC 20130218

Available from: 2013-02-18 Created: 2013-02-18 Last updated: 2013-02-18Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Hailesilassie, Biruk WobeshetPartl, Manfred N.
By organisation
Highway and Railway Engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 61 hits
ReferencesLink to record
Permanent link

Direct link