Change search
ReferencesLink to record
Permanent link

Direct link
Towards a unified framework using CPACS for geometry management in aircraft design
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.ORCID iD: 0000-0003-4991-5503
Show others and affiliations
2012 (English)In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, AIAA 2012-0549- p.Conference paper (Refereed)
Abstract [en]

The performance requirements for the next generations of airliners are stringent and require invention and design of unconventional configurations departing from the classical Cayley functional decomposition. The break with tradition calls for higher fidelity physics-based predictions of performance early on in the project. The paper makes the case for a unified, open, data-centric software environment for aircraft design and describes the merge of the CEASIOM conceptual design software package, developed by a number of partners including KTH, with the CPACS formalized data management system developed at DLR. The system provides multi-fidelity and multi-disciplinary analysis capabilities for concurrent design by geographically distributed expert teams. The data-centric architecture uses the CPACS schema and access mechanisms for management of design data across all disciplines and fidelity levels. This makes the system extensible and mitigates the problems encountered in handing over the model to later design phases. The concepts have been tested by interfacing external modules to CEASIOM/CPACS through a graphical CPACS XML editor, the ACbuilder gateway. Results of comparative analyses on models imported in this way from the RDS and VAMPzero conceptual design packages are reported here. CPACS will be released to the general public in spring '12. The CEASIOM team experience of joining forces via CPACS with DLR is altogether positive and further in-house development of software for aircraft performance prediction and design by the CEASIOM team will use the CPACS system.

Place, publisher, year, edition, pages
2012. AIAA 2012-0549- p.
Keyword [en]
Access mechanism, Aircraft design, Aircraft performance, Comparative analysis, Concurrent design, Data centric, Data management system, Data-centric architecture, Design data, Design phasis, Expert teams, Functional decomposition, General publics, Geometry management, In-house development, Multi fidelities, Multi-disciplinary analysis, Performance requirements, Physics-based, Software environments, Unified framework, XML-editors, Aircraft, Conceptual design, Exhibitions, Information management
National Category
Vehicle Engineering
URN: urn:nbn:se:kth:diva-118762DOI: 10.2514/6.2012-549ScopusID: 2-s2.0-84873837527OAI: diva2:608086
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 9 January 2012 through 12 January 2012, Nashville, TN

QC 20130226

Available from: 2013-02-26 Created: 2013-02-26 Last updated: 2015-05-28Bibliographically approved
In thesis
1. Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design
Open this publication in new window or tab >>Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis develops computational tools for early stages of the aircraft design process. The work focuses on a framework which allows several design teams concurrently to develop a baseline concept into a configuration which meets requirements and whose aerodynamics has been assessed by flight simulation. To this end, a data base format suggested by the German Aerospace Center DLR was adopted in the CEASIOM system, developed in the EU 6th Framework Program, enabling more accurate transonic analysis and tabulation of forces and moments as well as control surface authority assessment. Results from simple, fast models are combined with computationally expensive full CFD results by co-Kriging to speed up productionof the aero-data for flight simulation.

Non-linear optimization methods in wing design play an increasingly important role together with computational aerodynamics. High performance computing enables the use of high-fidelity non-linear flow predictions in optimization loops. It is argued that the optimization tools should allow the engineer to influence the process by setting up suitable target pressure distributions for the shape to approach, combined with steps to minimize drag under suitable constraints on geometry, forces, and moments. The simulation framework incorporated into CEASIOM was applied to a number of configurations, conventional as well as un-conventional, such as an a-symmetric twin prop, a canard-configured transonic cruiser, and a novel chinrudder concept for transonic airliners. Aerodynamic shape design by the developed methods was applied to the standard M6 benchmark wing, a joined-wing concept, a wing-tip, and a blended wing-body.

Abstract [sv]

Avhandlingen utvecklat beräkningsmoduler för tidiga stadier i flygplanskonstruktionsprocessen. Arbetet kocentreras på ett program-ramverk som låter flera designteam samtidigt utveckla en grund-modell till en konfiguration som uppfyller ställda krav och vars aerodynamik har undersökts med flygsimulering. För att nå detta mål antogs ett data-bas format utarbetat av DLR (German Aerospace Center) i CEASIOM-programpaketet som utvecklats i EUs sjätte ramprogram. Det möjliggjorde noggrannare analys och framtagning av tabeller över krafter och moment liksom bedömning av styrytors funktion i transoniskt fartområde. Resultat från enkla, snabba beräknngsmodeller kombineras via co-Kriging med beräkningsmässigt dyra CFD-körningar för att snabbt ta fram aero-data som behövs för flygsimuleringen.

Icke-linjär optimering spelar allt större roll i ving-formgivning, tillsammans med numerisk aerodynamik. Högpresterande datorer medger användning av noggranna icke-linjära strömningsmodeller också i optimerings-slingor. Det argumenteras för att optimerings-verktygen skall ge ingenjörerna direkt inflytande över processen genom definition av fördelaktiga tryckfördelningar som vingformen ska åstadkomma, kombinerat med steg som minimerar luftmotstånd under bivillkor på geometri, krafter och moment.

Simulerings-ramverket implementerat i CEASIOM tillämpas så på ett antal konfigurationer, konventionella såväl som o-konventionella: ett osymmetriskt tvåmotorigt propellerplan, och större transoniska flygplan, ett för Mach 0.97 med canardvinge, och ett nytt koncept med hak-roder.

Aerodynamisk formgivning med de utvecklade metoderna tillämpas på standardfallet M6-vingen, en transonisk dubbel-vinge, en vingtipp, och en flygande vinge.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xx, 101 p.
TRITA-AVE, ISSN 1651-7660 ; 2015:27
National Category
Aerospace Engineering
Research subject
Aerospace Engineering
urn:nbn:se:kth:diva-168169 (URN)978-91-7595-606-0 (ISBN)
Public defence
2015-06-12, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:15 (English)

QC 20150528

Available from: 2015-05-28 Created: 2015-05-27 Last updated: 2015-05-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rizzi, ArthurZhang, MengmengSaquet, Pierre
By organisation
Aeronautical and Vehicle EngineeringKTH
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 78 hits
ReferencesLink to record
Permanent link

Direct link