Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A photonic dye-based sensing system on a chip produced at wafer scale
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0525-8647
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-2650-0121
Show others and affiliations
(English)Article in journal (Other academic) Submitted
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-119837OAI: oai:DiVA.org:kth-119837DiVA: diva2:612676
Note

QS 2013

Available from: 2013-03-24 Created: 2013-03-24 Last updated: 2013-03-25Bibliographically approved
In thesis
1. Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor
Open this publication in new window or tab >>Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis treats the development of packaging and integration methods for the cost-efficient encapsulation and packaging of microelectromechanical (MEMS) devices. The packaging of MEMS devices is often more costly than the device itself, partly because the packaging can be crucial for the performance of the device. For devices which contain liquids or needs to be enclosed in a vacuum, the packaging can account for up to 80% of the total cost of the device.

The first part of this thesis presents the integration scheme for an optical dye thin film NO2-gas sensor, designed using cost-efficient implementations of wafer-scale methods. This work includes design and fabrication of photonic subcomponents in addition to the main effort of integration and packaging of the dye-film. A specific proof of concept target was for NO2 monitoring in a car tunnel.

The second part of this thesis deals with the wafer-scale packaging methods developed for the sensing device. The developed packaging method, based on low-temperature plastic deformation of gold sealing structures, is further demonstrated as a generic method for other hermetic liquid and vacuum packaging applications. In the developed packaging methods, the mechanically squeezed gold sealing material is both electroplated microstruc- tures and wire bonded stud bumps. The electroplated rings act like a more hermetic version of rubber sealing rings while compressed in conjunction with a cavity forming wafer bonding process. The stud bump sealing processes is on the other hand applied on completed cavities with narrow access ports, to seal either a vacuum or liquid inside the cavities at room temperature. Additionally, the resulting hermeticity of primarily the vacuum sealing methods is thoroughly investigated.

Two of the sealing methods presented require permanent mechanical fixation in order to complete the packaging process. Two solutions to this problem are presented in this thesis. First, a more traditional wafer bonding method using tin-soldering is demonstrated. Second, a novel full-wafer epoxy underfill-process using a microfluidic distribution network is demonstrated using a room temperature process.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. ix, 65 p.
Series
Trita-EE, ISSN 1653-5146 ; 2013:010
Keyword
Microelectromechanical systems, MEMS, Nanoelectromechanical systems, NEMS, silicon, wafer-level, packaging, vacuum packaging, liquid encapsulation, integration, wire bonding, grating coupler, waveguide, Fabry-Perot resonator
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-119839 (URN)978-91-7501-676-4 (ISBN)
Public defence
2013-04-19, Q2, Osquldas Väg 10, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130325

Available from: 2013-03-25 Created: 2013-03-24 Last updated: 2013-03-25Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Niklaus, FrankSohlström, Hans

Search in DiVA

By author/editor
Antelius, MikaelLapisa, MartinNiklaus, FrankSohlström, Hans
By organisation
Micro and Nanosystems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf