Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wafer-Level capping and sealing of heat sensitive substances and liquids with gold gaskets
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems. (ST Microelectronics)
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-2650-0121
Show others and affiliations
2013 (English)In: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 201, 154-163 p.Article in journal (Refereed) Published
Abstract [en]

This paper reports on a novel wafer-level packaging method employing gold gaskets and an epoxy underfill. The packaging is done at room-temperature and atmospheric pressure. The mild packaging conditions allow the encapsulation of sensitive devices. The method is demonstrated for two applications; the wafer-level encapsulation of a liquid and the wafer-level packaging of a photonic gas sensor containing heat sensitive dye-films.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 201, 154-163 p.
Keyword [en]
Wafer-level packaging, Liquid sealing, Room-temperature, Underfill application, Gasket
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-119838DOI: 10.1016/j.sna.2013.07.007ISI: 000325836400020Scopus ID: 2-s2.0-84881511190OAI: oai:DiVA.org:kth-119838DiVA: diva2:612677
Projects
Phodye
Funder
EU, European Research Council
Note

QC 20131129

Available from: 2013-03-24 Created: 2013-03-24 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor
Open this publication in new window or tab >>Wafer-scale Vacuum and Liquid Packaging Concepts for an Optical Thin-film Gas Sensor
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis treats the development of packaging and integration methods for the cost-efficient encapsulation and packaging of microelectromechanical (MEMS) devices. The packaging of MEMS devices is often more costly than the device itself, partly because the packaging can be crucial for the performance of the device. For devices which contain liquids or needs to be enclosed in a vacuum, the packaging can account for up to 80% of the total cost of the device.

The first part of this thesis presents the integration scheme for an optical dye thin film NO2-gas sensor, designed using cost-efficient implementations of wafer-scale methods. This work includes design and fabrication of photonic subcomponents in addition to the main effort of integration and packaging of the dye-film. A specific proof of concept target was for NO2 monitoring in a car tunnel.

The second part of this thesis deals with the wafer-scale packaging methods developed for the sensing device. The developed packaging method, based on low-temperature plastic deformation of gold sealing structures, is further demonstrated as a generic method for other hermetic liquid and vacuum packaging applications. In the developed packaging methods, the mechanically squeezed gold sealing material is both electroplated microstruc- tures and wire bonded stud bumps. The electroplated rings act like a more hermetic version of rubber sealing rings while compressed in conjunction with a cavity forming wafer bonding process. The stud bump sealing processes is on the other hand applied on completed cavities with narrow access ports, to seal either a vacuum or liquid inside the cavities at room temperature. Additionally, the resulting hermeticity of primarily the vacuum sealing methods is thoroughly investigated.

Two of the sealing methods presented require permanent mechanical fixation in order to complete the packaging process. Two solutions to this problem are presented in this thesis. First, a more traditional wafer bonding method using tin-soldering is demonstrated. Second, a novel full-wafer epoxy underfill-process using a microfluidic distribution network is demonstrated using a room temperature process.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. ix, 65 p.
Series
Trita-EE, ISSN 1653-5146 ; 2013:010
Keyword
Microelectromechanical systems, MEMS, Nanoelectromechanical systems, NEMS, silicon, wafer-level, packaging, vacuum packaging, liquid encapsulation, integration, wire bonding, grating coupler, waveguide, Fabry-Perot resonator
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-119839 (URN)978-91-7501-676-4 (ISBN)
Public defence
2013-04-19, Q2, Osquldas Väg 10, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130325

Available from: 2013-03-25 Created: 2013-03-24 Last updated: 2013-03-25Bibliographically approved
2. Wafer-level 3-D CMOS Integration of Very-large-scale Silicon Micromirror Arrays and Room-temperature Wafer-level Packaging
Open this publication in new window or tab >>Wafer-level 3-D CMOS Integration of Very-large-scale Silicon Micromirror Arrays and Room-temperature Wafer-level Packaging
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis describes the development of wafer-level fabrication and packaging methods for micro-electromechanical (MEMS) devices, based on wafer-bonding.

The first part of the thesis is addressing the development of a wafer-level technology that allows the use of high performance materials, such as monocrystalline silicon, for MEMS devices that are closely integrated on top of sensitive integrated circuits substrates. Monocrystalline silicon has excellent mechanical properties that are hard to achieve otherwise, and therefore it fits well in devices for adaptive optics and maskwriting applications where nanometer precision deflection requirements call for mechanically stable materials. However, the temperature sensitivity of the integrated circuits prohibits the use of monocrystalline silicon with conventional deposition and surface micromachining techniques. Here, heterogeneous 3-D integration by adhesive wafer-bonding is used to fabricate three different types of spatial light modulators, based on micromirror arrays made of monocrystalline silicon; micromirror arrays with vertically moving “piston-type” mirrors and with tilting mirrors made of one functional monocrystalline silicon layer, and vertically moving hidden-hinge micromirror arrays made of two functional monocrystalline silicon layers.

The second part of the thesis addresses the need for room-temperature packaging methods that allow the packaging of liquids or in general heat sensitive devices on wafer-level. A packaging method was developed that is based on a hybrid wafer-bonding approach, combining the compression bonding of gold gaskets with adhesive bonding. The packaging method is first demonstrated for the wafer-level encapsulation of liquids in reservoirs and then applied to packaging a dye-based photonic gas sensor.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. xi, 126 p.
Series
Trita-EES, 2013:031
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-125913 (URN)978-91-7501-843-0 (ISBN)
Public defence
2013-09-06, F3, Lindstedtsvägen 26, KTH, Stockholm, 14:14 (English)
Opponent
Supervisors
Note

QC 20130816

Available from: 2013-08-16 Created: 2013-08-16 Last updated: 2013-08-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sohlström, HansStemme, GöranNiklaus, Frank

Search in DiVA

By author/editor
Lapisa, MartinAntelius, MikaelTocchio, AlessandroSohlström, HansStemme, GöranNiklaus, Frank
By organisation
Micro and Nanosystems
In the same journal
Sensors and Actuators A-Physical
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 156 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf