Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polycrystalline indium phosphide on silicon using a simple chemical route
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Semiconductor Materials, HMA.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Semiconductor Materials, HMA.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Semiconductor Materials, HMA.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Semiconductor Materials, HMA.
Show others and affiliations
2013 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 9, 093504- p.Article in journal (Refereed) Published
Abstract [en]

We describe a simple, aqueous and low thermal budget process for deposition of polycrystalline indium phosphide on silicon substrate. Using stoichiometric indium oxide films prepared from its spin-coated precursor on silicon as an intermediate step, we achieve stoichiometric indium phosphide films through phosphidisation. Both indium oxide and indium phosphide have been characterized for surface morphology, chemical composition, and crystallinity. The morphology and crystalline structure of the films have been explained in terms of the process steps involved in our deposition method. Incomplete phosphidisation of indium oxide to indium phosphide results in the restructuring of the partly unconverted oxide at the phosphidisation temperature. The optical properties of the indium phosphide films have been analyzed using micro photoluminescence and the results compared with those of a homoepitaxial layer and a theoretical model. The results indicate that good optical quality polycrystalline indium phosphide has been achieved. The Hall measurements indicate that the carrier mobilities of our samples are among the best available in the literature. Although this paper presents the results of indium phosphide deposition on silicon substrate, the method that we present is generic and can be used for deposition on any suitable substrate that is flexible and cheap which makes it attractive as a batch process for photovoltaic applications.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2013. Vol. 113, no 9, 093504- p.
Keyword [en]
Batch process, Chemical compositions, Chemical routes, Crystalline structure, Crystallinities, Deposition methods, Good optical quality, Hall measurements, Homoepitaxial layers, Indium oxide, Indium oxide films, Low thermal budget, Micro photoluminescence, Photovoltaic applications, Polycrystalline, Process steps, Silicon substrates, Theoretical models
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-121120DOI: 10.1063/1.4794006ISI: 000316086500014Scopus ID: 2-s2.0-84874772670OAI: oai:DiVA.org:kth-121120DiVA: diva2:616928
Note

QC 20130419

Available from: 2013-04-19 Created: 2013-04-19 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lourdudoss, Sebastian

Search in DiVA

By author/editor
Metaferia, WondwosenDagur, PriteshJunesand, CarlHu, ChenLourdudoss, Sebastian
By organisation
Semiconductor Materials, HMA
In the same journal
Journal of Applied Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf