Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimization of Laser Induced Forward Transfer by Finite Element Modeling
KTH, School of Information and Communication Technology (ICT).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis explains a comprehensive study on the thermal modeling aspects of Laser Induced Forward Transfer (LIFT), a laser direct write technique. The LIFT process utilizes a focused laser beam to transfer a donor material coated on a laser wavelength transparent substrate to a receiver substrate kept in close proximity. COMSOL Multiphysics is used to implement a two-dimensional time dependent surface and volumetric heat generation model.

The thermal model covers the laser induced heating in a pure copper donor material for nanosecond and picosecond pulsed Nd:YAG (Neodymium doped Yttrium Aluminium Garnett) lasers operating at 355 nm wavelength. The model is used to understand the molten regime of the donor material during LIFT process with a stationary laser beam of Gaussian profile in temporal and spatial domain. The input parameters used in the model include both temperature-dependent as well as temperature-independent thermophysical material properties such as heat capacity and thermal conductivity. In addition, theoretical investigations are done to study the optical properties of the material such as absorption coefficient and reflectivity. Simulations are done by changing pulse length, energy per pulse, donor layer thickness and wavelength. Investigation of the heat loss in the donor substrate is also carried out. The influence of wavelengths for 355 nm, 532 nm and 1064 nm at a fixed laser fluence and thickness is also studied.

The simulation result shows strengths and weaknesses of both nanosecond and picosecond systems. A picosecond pulse is much dependent on thickness of the material (a few 100 nanometers) whereas a nanosecond pulse is capable of melting a thicker layer (a few micrometers). Choosing a particular laser pulse depends entirely on the type of applications and requirements.

It is observed that the peak surface temperature increases linearly with increasing fluence and falls exponentially with increasing donor layer thickness. Also, it is seen that the longer wavelengths require more energy to reach melting temperature at same fluence and thickness due to increased value of reflectivity and less energetic photons. The simulated results give a good approximation to the experimental results of copper LIFT. The model can be used for other materials also by using the relevant material properties.

Place, publisher, year, edition, pages
2013. , 89 p.
Series
Trita-ICT-EX, 2013:54
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-121209OAI: oai:DiVA.org:kth-121209DiVA: diva2:617570
Educational program
Master of Science - Nanotechnology
Uppsok
Technology
Examiners
Available from: 2013-04-23 Created: 2013-04-23 Last updated: 2013-04-23Bibliographically approved

Open Access in DiVA

fulltext(2704 kB)1841 downloads
File information
File name FULLTEXT01.pdfFile size 2704 kBChecksum SHA-512
6532e0e2587243745fbb4f7763688549b9044f5efa0fb5a802913b9ba6223cdae9e2949f4d6e219fba249672915f2d94cacd39d6333b31e62b754f19f7d3de9d
Type fulltextMimetype application/pdf

By organisation
School of Information and Communication Technology (ICT)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1841 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1862 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf