Change search
ReferencesLink to record
Permanent link

Direct link
Interaction imaging with amplitude-dependence force spectroscopy
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0002-5923-0279
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0003-0675-974X
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0001-8534-6577
2013 (English)In: Nature Communications, ISSN 2041-1723, Vol. 4, 1360- p.Article in journal (Refereed) Published
Abstract [en]

Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here we present a new approach that combines high-accuracy force measurements and high-resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS), is based on the amplitude dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its widespread use in taking AFM toward quantitative microscopy.

Place, publisher, year, edition, pages
2013. Vol. 4, 1360- p.
Keyword [en]
Atomic-Resolution, Microscopy, Probe, Cantilevers, Nanoscale, Contact, Surface, Chaos, AFM
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-121505DOI: 10.1038/ncomms2365ISI: 000316614600030ScopusID: 2-s2.0-84876120115OAI: diva2:619641
Swedish Research CouncilVinnova

QC 20130506

Available from: 2013-05-06 Created: 2013-04-29 Last updated: 2013-05-27Bibliographically approved
In thesis
1. Reconstructing force from harmonic motion
Open this publication in new window or tab >>Reconstructing force from harmonic motion
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-quality factor oscillators are often used in measurements of verysmall force since they exhibit an enhanced sensitivity in the narrow frequencyband around resonance. Forces containing frequencies outside this frequencyband are often not detectable and the total force acting on the oscillatorremains unknown. In this thesis we present methods to eciently use theavailable bandwidth around resonance to reconstruct the force from partialspectral information.We apply the methods to dynamic atomic force microscopy (AFM) wherea tip at the end of a small micro-cantilever oscillates close to a sample surface.By reconstructing the force between the tip and the surface we can deducedierent properties of the surface. In contrast, in conventional AFM only oneof the many frequency components of the time-dependent tip-surface forceallowing for only qualitative conclusions about the tip-surface force.To increase the number of measurable frequency components we developed Intermodulation AFM (ImAFM). ImAFM utilizes frequency mixing ofa multifrequency drive scheme which generates many frequencies in the response to the nonlinear character of the tip-surface interaction. ImAFM,amplitude-modulated AFM and frequency-modulated AFM can be considered as special cases of narrow-band AFM, where the tip motion can bedescribed by a rapidly oscillating part and a slowly-varying envelope function. Using the concept of force quadratures, each rapid oscillation cycle canbe analyzed individually and ImAFM measurements can be interpreted as arapid measurement of the dependence of the force quadratures on the oscillation amplitude or frequency. To explore the limits of the force quadraturesdescription we introduce the force disk which is a complete description of thetip-surface force in narrow-band AFM at xed static probe height.We present a polynomial force reconstruction method for multifrequencyAFM data. The polynomial force reconstruction is a linear approximativeforce reconstruction method which is based on nding the parameters of amodel force which best approximates the tip-surface force. Another classof reconstruction methods are integral techniques which aim to invert theintegral relation between the tip-surface force and the measured spectraldata. We present an integral method, amplitude-dependence force spectroscopy (ADFS), which reconstructs the conservative tip-surface force fromthe amplitude-dependence of the force quadratures. Together with ImAFMwe use ADFS to combine high-resolution AFM imaging at high speeds withhighly accurate force measurements in each point of an image. For the measurement of dissipative forces we discuss how methods from tomography canbe used to reconstruct forces that are a function of both tip position andvelocity.The methods developed in this thesis are not limited to dynamic AFM andwe describe them in the general context of a harmonic oscillator subject to anexternal force. We hope that theses methods contribute to the transformationof AFM from a qualitative imaging modality into quantitative microscopy andwe hope that they nd application in other measurements which exploit theenhanced sensitivity of a high-quality factor oscillator.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. v, 91 p.
Trita-FYS, ISSN 0280-316X ; 2013:21
oscillator, force spectroscopy, atomic force microscopy, intermodulation, multifrequency, inverse problem, high quality factor
National Category
Nano Technology
urn:nbn:se:kth:diva-122583 (URN)978-91-7501-792-1 (ISBN)
Public defence
2013-06-14, FA31, Albanova University Center, Roslagstullsbacken 21, Stockholm, 13:00 (English)

QC 20130527

Available from: 2013-05-27 Created: 2013-05-23 Last updated: 2013-05-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Platz, DanielForchheimer, DanielHaviland, David B.
By organisation
Nanostructure Physics
In the same journal
Nature Communications
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 82 hits
ReferencesLink to record
Permanent link

Direct link