CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Polyanalytic Ginibre EnsemblesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)In: Journal of statistical physics, ISSN 0022-4715, E-ISSN 1572-9613, Vol. 153, no 1, p. 10-47Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 153, no 1, p. 10-47
##### Keywords [en]

Bargmann-Fock space, Polyanalytic function, Determinantal point process
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-122140DOI: 10.1007/s10955-013-0813-xISI: 000323664300002Scopus ID: 2-s2.0-84883561179OAI: oai:DiVA.org:kth-122140DiVA, id: diva2:620975
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt451",{id:"formSmash:j_idt451",widgetVar:"widget_formSmash_j_idt451",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt457",{id:"formSmash:j_idt457",widgetVar:"widget_formSmash_j_idt457",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true});
##### Funder

Swedish Research Council
##### Note

##### In thesis

For integers n,q=1,2,3,aEuro broken vertical bar aEuro parts per thousand, let Pol (n,q) denote the -linear space of polynomials in z and , of degree a parts per thousand currency signn-1 in z and of degree a parts per thousand currency signq-1 in . We supply Pol (n,q) with the inner product structure of the resulting Hilbert space is denoted by Pol (m,n,q) . Here, it is assumed that m is a positive real. We let K (m,n,q) denote the reproducing kernel of Pol (m,n,q) , and study the associated determinantal process, in the limit as m,n ->+a while n=m+O(1); the number q, the degree of polyanalyticity, is kept fixed. We call these processes polyanalytic Ginibre ensembles, because they generalize the Ginibre ensemble-the eigenvalue process of random (normal) matrices with Gaussian weight. There is a physical interpretation in terms of a system of free fermions in a uniform magnetic field so that a fixed number of the first Landau levels have been filled. We consider local blow-ups of the polyanalytic Ginibre ensembles around points in the spectral droplet, which is here the closed unit disk . We obtain asymptotics for the blow-up process, using a blow-up to characteristic distance m (-1/2); the typical distance is the same both for interior and for boundary points of . This amounts to obtaining the asymptotical behavior of the generating kernel K (m,n,q) . Following (Ameur et al. in Commun. Pure Appl. Math. 63(12):1533-1584, 2010), the asymptotics of the K (m,n,q) are rather conveniently expressed in terms of the Berezin measure (and density) For interior points |z|< 1, we obtain that in the weak-star sense, where delta (z) denotes the unit point mass at z. Moreover, if we blow up to the scale of m (-1/2) around z, we get convergence to a measure which is Gaussian for q=1, but exhibits more complicated Fresnel zone behavior for q > 1. In contrast, for exterior points |z|> 1, we have instead that , where is the harmonic measure at z with respect to the exterior disk . For boundary points, |z|=1, the Berezin measure converges to the unit point mass at z, as with interior points, but the blow-up to the scale m (-1/2) exhibits quite different behavior at boundary points compared with interior points. We also obtain the asymptotic boundary behavior of the 1-point function at the coarser local scale q (1/2) m (-1/2).

QC 20150629

Available from: 2013-05-13 Created: 2013-05-13 Last updated: 2017-12-06Bibliographically approved1. Polyanalytic Bergman Kernels$(function(){PrimeFaces.cw("OverlayPanel","overlay620524",{id:"formSmash:j_idt738:0:j_idt742",widgetVar:"overlay620524",target:"formSmash:j_idt738:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1176",{id:"formSmash:j_idt1176",widgetVar:"widget_formSmash_j_idt1176",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1230",{id:"formSmash:lower:j_idt1230",widgetVar:"widget_formSmash_lower_j_idt1230",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1231_j_idt1233",{id:"formSmash:lower:j_idt1231:j_idt1233",widgetVar:"widget_formSmash_lower_j_idt1231_j_idt1233",target:"formSmash:lower:j_idt1231:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});