CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Explicit algebraic turbulence modelling in buoyancy-affected shear flowsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2013. , viii, 27 p.
##### Series

Trita-MEK, ISSN 0348-467X ; 2013:13
##### National Category

Fluid Mechanics and Acoustics
##### Identifiers

URN: urn:nbn:se:kth:diva-122468ISBN: 978-91-7501-797-6 (print)OAI: oai:DiVA.org:kth-122468DiVA: diva2:622624
##### Presentation

2013-06-14, E3, Osquars Backe 14, KTH, Stockholm, 10:30 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

##### List of papers

Turbulent flows affected by buoyancy forces occur in a large amount of applica-tions, from heat transfer in industrial settings to the effects of stratification inEarth’s atmosphere. The two-way coupling between the Reynolds stresses andthe turbulent heat flux present in these flows poses a challenge in the searchfor an appropriate turbulence model. The present thesis addresses this issueusing the class of explicit algebraic models. Starting from the transport equations for the Reynolds stresses and the tur-bulent heat flux, an explicit algebraic framework is derived for two-dimensionalmean flows under the influence of buoyancy forces. This framework consistsof a system of 18 linear equations, the solution of which leads to explicit ex-pressions for the Reynolds-stress anisotropy and a scaled heat flux. The modelis complemented by a sixth-order polynomial equation for a quantity relatedto the total production-to-dissipation ratio of turbulent kinetic energy. Sinceno exact solution to such an equation can be found, various approximationmethods are presented in order to obtain a fully explicit algebraic model. Several test cases are considered in this work. Special attention is given tothe case of stably stratified parallel shear flows, which is also used to calibratethe model parameters. As a result of this calibration, we find a critical Richard-son number of 0.25 in the case of stably stratified homogeneous shear flow,which agrees with theoretical results. Furthermore, a comparison with directnumerical simulations (DNS) for stably stratified channel flow shows an excel-lent agreement between the DNS data and the model. Other test cases includeunstably stratified channel flow and vertical channel flow with either mixed con-vection or natural convection, and a reasonably good agreement between themodel and the scarcely available, low-Reynolds-number DNS is found. Com-pared to standard eddy-viscosity/eddy-diffusivity models, an improvement inthe predictions is observed in all cases. For each of the aforementioned test cases, model coefficients and additionalcorrections are derived separately, and a general formulation has yet to be given.Nevertheless, the results presented in this thesis have the potential of improvingthe prediction of buoyancy-affected turbulence in various application areas.

QC 20130530

Available from: 2013-05-30 Created: 2013-05-22 Last updated: 2013-05-30Bibliographically approved1. An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows$(function(){PrimeFaces.cw("OverlayPanel","overlay622615",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay622615",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Explicit algebraic models for turbulent flows with buoyancy effects$(function(){PrimeFaces.cw("OverlayPanel","overlay622619",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay622619",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});