Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Expansion of carbon fibres induced by lithium intercalation for structural electrode applications
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0002-9744-4550
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
Show others and affiliations
2013 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 59, 246-254 p.Article in journal (Refereed) Published
Abstract [en]

Carbon fibres (CFs) can work as lightweight structural electrodes in CF-reinforced composites able to store energy as lithium (Li)-ion batteries. The CF has high stiffness and strength-to-weight ratios and a carbonaceous microstructure which enables Li intercalation. An innovative in situ technique for studying the longitudinal expansion of the CF and the relationship with the amount of intercalated Li is described in the present paper. The polyacrylonitrile-based CFs, T800H and unsized IMS65, were chosen for their electrochemical storage capacities. It was found that the CF expands during lithiation and contracts during delithiation. At the first electrochemical cycle, the expansion is partly irreversible which supports that the first-cycle capacity loss partly relates to Li trapped in the CF structure. For the following cycles, the capacity and the expansion are reversible. The expansion, which might relate to tensile stress, increases up to 1% as the measured capacity approaches the theoretical limit of 372 mAh/g for Li storage in graphite. Minor additional expansions due to the uneven distribution of intercalated Li in the CF structure were measured before and after lithiations. Using scanning electron microscope images the transverse expansion of fully lithiated CFs was estimated to about 10% of the cross-section area.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 59, 246-254 p.
Keyword [en]
Ion Batteries, Graphite, Modulus
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:kth:diva-122874DOI: 10.1016/j.carbon.2013.03.015ISI: 000320489300025Scopus ID: 2-s2.0-84877692135OAI: oai:DiVA.org:kth-122874DiVA: diva2:623816
Funder
Swedish Foundation for Strategic Research , RMA08-0002Swedish Research Council, 621-2012-3764StandUp
Note

QC 20130529

Available from: 2013-05-28 Created: 2013-05-28 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Performance of Conventional and Structural Lithium-Ion Batteries
Open this publication in new window or tab >>Performance of Conventional and Structural Lithium-Ion Batteries
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries have, in recent years, experienced a rapid development from small everyday devices towards hybrid electric vehicle (HEV) applications. Due to this shift in application area, the battery performance andits degradation with time are becoming increasingly important issues to besolved.In this thesis, lithium-ion batteries are investigated with focus on lifetime performance of an existing battery chemistry, and development of electrodes for so-called structural batteries. The systems are evaluated by electrochemical methods, such as cycling and electrochemical impedance spectroscopy (EIS),combined with material characterization and modeling.

Lifetime performance of mesocarbon microbeads (MCMB)/LiFePO4 cells was investigated to develop an understanding of how this technology tolerates and is influenced by different conditions, such as cycling, storage and temperature.The lifetime of the LiFePO4-based cells was found to be significantly reduced by cycling at elevated temperature, almost five times shorter compared to cycle-aged cells at ambient temperature. The calendar-aged cells also showed major signs of degradation at elevated temperatures. The overall cause of aging was electrolyte decomposition which resulted in loss of cyclable lithium, i.e. capacity fade, and impedance increase.

Commercially available polyacrylonitrile (PAN)-based carbon fibers were investigated, both electrochemically and mechanically, to determine their suitability as negative electrodes in structural batteries. The electrochemical performance of carbon fibers was found to be excellent compared to other negative electrode materials, especially for single or well-separated fibers. The mechanical properties, measured as changes in the tensile properties, showed that the tensile stiffness was unaffected by lithium-ion intercalation and cycling. The ultimate tensile strength, however, showed a distinct variation with state-of-charge (SOC). Overall, carbon fibers are suitable for structural battery applications.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 48 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2013:28
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-122875 (URN)978-91-7501-774-7 (ISBN)
Public defence
2013-06-12, K2, Teknikringen 28, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130529

Available from: 2013-05-29 Created: 2013-05-28 Last updated: 2013-05-29Bibliographically approved
2. Lithium-intercalated Carbon Fibres: Towards the Realisation of Multifunctional Composite Energy Storage Materials
Open this publication in new window or tab >>Lithium-intercalated Carbon Fibres: Towards the Realisation of Multifunctional Composite Energy Storage Materials
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lightweight design is a major improvement path for sustainable transport asit contributes to lower vehicles energy consumption and gas emissions. Anovel solution to weight savings is to store energy directly in the mechanicalstructure of the vehicle with a multifunctional material, called structural battery,which could simultaneously bear mechanical loads and store electricalenergy. This is especially possible because the carbon fibre is a high performancemechanical reinforcement for polymer composites and can also be usedas a lithium-intercalating electrode in lithium-ion batteries. In this thesis, theperformance of carbon fibres for use as a lithium-intercalating structural electrodeis investigated.Electrochemical characterisation has shown that intermediate modulus polyacrylonitrile- based carbon fibres which have the highest strength also offerthe most promising electrochemical capacities when compared to other fibregrades with different microstructures. The measured capacity of fibre bundleswas highly dependent on the current rate and at low rate the capacitiesclose to that of graphite electrodes were measured. In a mechanical characterisationthe carbon fibre was not affected by the number of electrochemicalcycles, up to 1000 cycles, but rather by the amount of intercalated lithium.The tensile stiffness appeared to remain unchanged, but during lithation thetensile strength dropped and partly recovered during delithiation due to afirst-cycle irreversible drop. A longitudinal expansion of the carbon fibre wasalso measured during lithiation. An irreversible expansion in the delithiatedfibres highlighted that the first cycle-capacity loss is partly due to intercalatedlithium which is trapped in the carbon fibre. From these results, the carbonfibre is without doubts suitable for structural battery applications.A mechanical-electrochemical coupling in lithium-intercalated carbon fibreswas also measured, highlighting a piezo-electrochemical transducer effect resultingin new functionalities for lithium-intercalated carbon fibres. The longitudinalexpansion strain can be used for mechanical actuation. A responseof the cell open-circuit potential to an applied mechanical strain can be usedfor strain sensing.

Abstract [sv]

Lättviktsdesign är en stor väg till förbättring för hållbara transporter eftersomdet bidrar till lägre energiförbrukning och utsläpp för fordon. Ett ny lösningpå viktbesparing är att lagra energi direkt i den mekaniska fordonskroppenmed ett multifunktionellt material, kallat strukturellt batteri, som samtidigtskulle kunna bära mekaniska belastningar och lagra elektrisk energi. Dettaär möjligt eftersom kolfibrer är en högpresterande mekanisk förstärkningav polymerkompositer och också kan användas för en litium-interkalerandeelektrod i litiumjonbatterier. I denna avhandling har användandet av kolfibrersom en litium-interkalerande strukturell elektrod undersöks.Elektrokemisk karakterisering har visat att mellanmodul-polyakrylnitrilbaseradekolfibrer som har den högsta styrkan även erbjuder de mest lovandeelektrokemiska egenskaperna jämfört med andra fibersorter med annorlundamikrostrukturer. Den uppmätta kapaciteten hos fibrerknippen var starkt beroendeav den aktuella spänningen och vid låg spänning kapaciteter nära denför grafitelektroder mättes. Vid en mekanisk belastning påverkas kolfibrerninte av antalet elektrokemiska cykler, upp till 1000 cykler, utan snarare avmängden interkalerad litium. Dragstyvheten verkade vara oförändrat, menunder litiering sjönk draghållfastheten som dock delvis återhämtade sig efterdelitiering men med en irreversibel förlust efter den första cykeln. Enlängdexpansion av kolfibern mättes under litiering. En irreversibel expansionefter delitiering av fibrer betonade att kapacitetsförlusten efter förstacykeln berodde delvis på interkalerat litium, som är instängt i kolfibrerna.Utifrån dessa resultat är kolfibrer utan tvivel lämpliga för strukturella batteritillämpning.En mekanisk-elektrokemisk koppling i litiuminterkalerade kolfibrer mättesockså, vilket belyser en piezo-elektrokemisk effekt som kan ge nya funktionerför litium-interkalerande kolfibrer. Expansionen kan användas för mekaniskaktivering. Det svaret hos cellpotentialen vid en mekanisk deformation kananvändas för deformationsavkänning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xi, 61 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2014:07
National Category
Engineering and Technology
Research subject
Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-144323 (URN)978-91-7595-072-3 (ISBN)
Public defence
2014-05-16, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Projects
Kombatt
Funder
Swedish Foundation for Strategic Research , 26188Swedish Research Council, 621- 2012-3764
Note

QC 20140423

Available from: 2014-04-23 Created: 2014-04-17 Last updated: 2014-04-23Bibliographically approved

Open Access in DiVA

fulltext(1245 kB)81 downloads
File information
File name FULLTEXT01.pdfFile size 1245 kBChecksum SHA-512
783c18690651f5962f9bb58f5a98b3ce85ab59f308cd2e9b42ced45f2863fc1e3d304fd5cc010a3f238deb3249a79ab600096f72f3feadbd3abbd1f4f958f448
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusSciencedirect

Authority records BETA

Zenkert, DanLindbergh, GöranBehm, Mårten

Search in DiVA

By author/editor
Jacques, EricKjell, MariaZenkert, DanLindbergh, GöranBehm, Mårten
By organisation
Lightweight StructuresApplied Electrochemistry
In the same journal
Carbon
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 81 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 246 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf