Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Constitutive modelling of a paper fibre in cyclic loading applications
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).ORCID iD: 0000-0003-3611-2250
2013 (English)Report (Other academic)
Place, publisher, year, edition, pages
2013. Vol. 27, no 2, 318-328 p.
Series
Trita-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 541
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-123234OAI: oai:DiVA.org:kth-123234DiVA: diva2:625545
Note

QC 20130605

Available from: 2013-06-05 Created: 2013-06-05 Last updated: 2013-06-05Bibliographically approved
In thesis
1. Micromechanical Behavior of Fiber Networks
Open this publication in new window or tab >>Micromechanical Behavior of Fiber Networks
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper is used in a wide range of applications, each of which has specific requirements on mechanical and surface properties. The role of paper strength on paper performance is still not well understood. This work addresses the mechanical properties of paper by utilizing fiber network simulation and consists of two parts.In the first part, we use a three-dimensional model of a network of fibers to describe the fracture process of paper accounting for nonlinearities at the fiber level (material model and geometry) and bond failures. A stress-strain curve of paper in tensile loading is described with the help of the network of dry fibers; the parameters that dominate the shape of this curve are discussed. The evolution of network damage is simulated, the results of which are compared with digital speckle photography experiments on laboratory sheets. It is concluded that the original strain inhomogeneities due to the structure are transferred to the local bond failure dynamics. The effects of different conventional and unconventional bond parameters are analyzed. It has been shown that the number of bonds in paper is important and that the changes in bond strength influence paper mechanical properties significantly.In the second part, we proposed a constitutive model for a fiber suitable for cyclic loading applications. We based the development of the available literature data and on the detailed finite-element model of pulp fibers. The model provided insights into the effects of various parameters on the mechanical response of the pulp fibers. The study showed that the change in the microfibril orientation upon axial straining is mainly a geometrical effect and is independent of material properties of the fiber as long as the deformations are elastic. Plastic strains accelerate the change in microfibril orientation. The results also showed that the elastic modulus of the fiber has a non-linear dependency on a microfibril angle,with elastic modulus being more sensitive to the change of microfibril angle around small initial values of microfibril angles. These effects were incorporated into a non-linear isotropic hardening plasticity model for beams and tested in a fiber network in cycling loading application model, using the model we estimated the level of strains that fiber segments accumulate at the failure point in a fiber network.The main goal of this work is to create a tool that would act as a bridge between microscopic characterization of fiber and fiber bonds and the mechanical properties that are important in the papermaking industry. The results of this work provide a fundamental insight on mechanics of paper constituents in tensile as well as cyclic loading. This would eventually lead to a rational choice of raw materials in paper manufacturing and thus utilizing the environment in a balanced way.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 22 p.
Series
Trita-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0542
Keyword
Network simulation, Mechanical properties, Fibers, Bonds, Paper properties, Damage, Microfibril angle, Torsion
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-123223 (URN)978-91-7501-789-1 (ISBN)
Presentation
2013-06-10, Seminarierummet, Teknikringen 8D, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130605

Available from: 2013-06-05 Created: 2013-06-05 Last updated: 2013-06-05Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Kulachenko, Artem

Search in DiVA

By author/editor
Borodulina, SvetlanaKulachenko, Artem
By organisation
Solid Mechanics (Div.)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf