References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Coulomb gas ensembles and Laplacian growthPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)In: Proceedings of the London Mathematical Society, ISSN 0024-6115, E-ISSN 1460-244X, Vol. 106, no 4, 859-907 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 106, no 4, 859-907 p.
##### Keyword [en]

Random Normal Matrices, Hele-Shaw, Variational-Inequalities, Hyperbolic Surfaces, Eigenvalues, Fluctuations
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-123635DOI: 10.1112/plms/pds032ISI: 000318573700004ScopusID: 2-s2.0-84877295156OAI: oai:DiVA.org:kth-123635DiVA: diva2:628450
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Funder

Swedish Research CouncilGöran Gustafsson Foundation for Research in Natural Sciences and Medicine
##### Note

We consider weight functions Q : C -> R that are locally in a suitable Sobolev space and impose a logarithmic growth condition from below. We use Q as a confining potential in the model of one-component plasma (2-dimensional Coulomb gas) and study the configuration of the electron cloud as the number n of electrons tends to infinity, while the confining potential is rescaled: we use mQ in place of Q and let m tend to infinity as well. We show that if m and n tend to infinity in a proportional fashion, with n/m -> t, where 0 < t <+infinity is fixed, then the electrons accumulate on a compact set S-t, which we call the droplet. The set S-t can be obtained as the coincidence set of an obstacle problem, if we remove a small set (the shallow points). Moreover, on the droplet S-t, the density of electrons is asymptotically delta Q. The growth of the droplets S-t as t increases is known as the Laplacian growth. It is well known that Laplacian growth is unstable. To analyse this feature, we introduce the notion of a local droplet, which involves removing part of the obstacle away from the set S-t. The local droplets are no longer uniquely determined by the time parameter t, but at least they may be partially ordered. We show that the growth of the local droplets may be terminated in a maximal local droplet or by the droplets' growing to infinity in some direction ('fingering').

QC 20150624

Available from: 2013-06-14 Created: 2013-06-13 Last updated: 2015-06-24Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});