Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.ORCID iD: 0000-0002-1837-5439
Show others and affiliations
2013 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 107, 173-182 p.Article in journal (Refereed) Published
Abstract [en]

Pelletized recovered solid waste fuel is often applied in gasification systems to provide feedstock with a stabilized quality and high heating value and to avoid the bridging behavior caused by high moisture content, low particle density, and irregular particle size. However, the swelling properties and the sticky material generated from pyrolysis of the plastic group components also tend to trigger bridging in the retorting zone. It is well known that the plastic group materials, which occupy a considerable proportion of municipal solid waste, can melt together easily even under low temperature. This study investigates the pyrolysis behaviors of typical recovered solid waste pellets, including the devolatilization rate, heat transfer properties, char properties, and swelling/shrinkage properties, in a small fixed-bed facility over a wide temperature range, from 900 degrees C to 450 degrees C. The results are also compared with those from wheat straw pellets, a typical cellulosic fuel. Moreover, the SEM images and BET analysis of the char structure are further analyzed to provide additional explanation for the mechanisms of swelling/shrinkage phenomena observed during heating.

Place, publisher, year, edition, pages
2013. Vol. 107, 173-182 p.
Keyword [en]
Fixed-bed gasifier, Municipal solid waste (MSW), Pellet, Pyrolysis, Swelling
National Category
Energy Engineering
Research subject
SRA - Energy
Identifiers
URN: urn:nbn:se:kth:diva-123611DOI: 10.1016/j.apenergy.2013.02.029ISI: 000318456700015Scopus ID: 2-s2.0-84875195695OAI: oai:DiVA.org:kth-123611DiVA: diva2:628478
Note

QC 20130614

Available from: 2013-06-14 Created: 2013-06-13 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid Waste
Open this publication in new window or tab >>Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid Waste
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The significant generation of municipal solid waste (MSW) has become a controversial global issue. Pyrolysis and gasification technologies for treating rejects from solid waste disposal sites (SWDSs), for which over 50 % of MSW is attributed to combustible species, have attracted considerable attention. MSW is an alternative energy source that can partly replace fossil resources; there is an increasing awareness that global warming caused by the utilization of fossil resources is occurring.

The goal of this thesis is to realize the efficient and rational utilization of MSW and decrease the harmful impact of pollutants, such as dioxin, HCl, and CO2, on the environment. To achieve this goal, some fundamental studies have been experimentally and numerically conducted to enhance the understanding of the properties of municipal solid waste thermal conversion.

In this thesis, the pyrolysis behaviors of single pelletized recovered fuel were tested. A detailed comparison of the pyrolysis behaviors of typical recovered solid waste and biomass particles was conducted. A swelling phenomenon with a swelling ratio of approximately 1.6 was observed on the surface of pelletized recovered fuels. Subsequently, a particle model was constructed to describe the thermal conversion process for large recovered fuel particles that are composed of a high fraction of polyethylene (PE) and a comparable low fraction of cardboard. The results indicate that an understanding of the heat transfer mechanism in highly porous and molten structures and the selection of a heat transfer model are crucial for accurate prediction of the conversion process.

MSW pyrolysis is a promising method for producing liquid products. With the exception of lignocellulosic materials, such as printing paper and cardboard, PE, polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) are the six main polymers in domestic waste in Europe. Characterization studies of the products obtained from these individual components, such as PE, PET, PVC, printing paper, and cardboard, have been conducted on a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) system and a fixed-bed reactor. The possible pathways for the formation of the main primary/secondary products in rapid and conventional pyrolysis were also discussed.

MSW steam gasification with CaO was performed in a batch-type fixed-bed gasifier to examine the effect of CaO addition on the heat transfer properties, pollutant removal, and devolatilization and char gasification behaviors in the presence of steam.

A new carbon capture and recycle (CCR) system combined with an integrated municipal solid waste system was proposed. The foundation of the system is the development of a novel method to remediate CO2 using a high-temperature process of reforming CH4 and/or O2 and/or H2O without catalysts. Thermodynamic and experimental studies were performed. High temperatures significantly promoted the multi-reforming process while preventing the problem of catalyst deactivation. Potential improvements in the efficiency of the novel technology can be achieved by optimizing the reforming reactants. Landfill gas (LFG) and fuel gas from bio-waste treatment contain a considerable fraction of CH4, which may be a source of CH4 for this process.  

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xiv, 127 p.
Keyword
municipal solid waste, pyrolysis, gasification, heat transfer, CaO, CO2, reforming, numerical model
National Category
Energy Engineering
Research subject
Energy Technology; Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-154587 (URN)978-91-7595-284-0 (ISBN)
Public defence
2014-11-10, Sal F3, Lindstedtvägen 26, KTH, stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC20141028

Available from: 2014-10-28 Created: 2014-10-24 Last updated: 2014-10-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Yang, Weihong

Search in DiVA

By author/editor
Zhou, ChunguangZhang, QinglinYang, WeihongBlasiak, Wlodzimierz
By organisation
Energy and Furnace Technology
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 238 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf